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The Value of Exact Analysis
in Requirements Selection
Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang

Abstract—Uncertainty is characterised by incomplete understanding. It is inevitable in the early phase of requirements engineering,
and can lead to unsound requirement decisions. Inappropriate requirement choices may result in products that fail to satisfy
stakeholders’ needs, and might cause loss of revenue. To overcome uncertainty, requirements engineering decision support needs
uncertainty management. In this research, we develop a decision support framework METRO for the Next Release Problem (NRP) to
manage algorithmic uncertainty and requirements uncertainty. An exact NRP solver (NSGDP) lies at the heart of METRO. NSGDP ’s
exactness eliminates interference caused by approximate existing NRP solvers. We apply NSGDP to three NRP instances, derived
from a real world NRP instance, RALIC, and compare with NSGA-II, a widely-used approximate (inexact) technique. We find the
randomness of NSGA-II results in decision makers missing up to 99.95% of the optimal solutions and obtaining up to 36.48% inexact
requirement selection decisions. The chance of getting an inexact decision using existing approximate approaches is negatively
correlated with the implementation cost of a requirement (Spearman ρ up to −0.72). Compared to the inexact existing approach,
NSGDP saves 15.21% lost revenue, on average, for the RALIC dataset.

Index Terms—Software engineering, Exact multi-objective optimisation, Simulation optimisation, Next release problem
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1 INTRODUCTION

Determining an appropriate subset of requirements to
be delivered in the next release of a software system is a
critical aspect in software engineering. In 1996, Karlsson
developed an Analytical Hierarchy Process for supporting
software requirements selection and prioritisation [1]. It
was subsequently formulated as the Next Release Problem
(NRP) by Bagnall et al. [2] in 2001. The NRP models stake-
holders’ objectives quantitatively, and employs optimisation
techniques (i.e., meta-heuristic algorithms, dynamic pro-
gramming) to identify a subset of requirements that is both
feasible and well-suited to stakeholders’ requirements. The
NRP is a non-trivial problem, known to be NP-hard [2], [3],
[4]. The search space of this problem increases exponentially
with the number of requirements. Nevertheless, there are
exact solutions to the classic NRP (which simply balances
cost and value) that scale reasonably [4], [5], [6].

Unfortunately, such exisiting exact solution approaches
fail to cater for uncertainty. Uncertainty is an inherent
characteristic of software engineering [7]. The essence of
uncertainty is the lack of complete knowledge at the time
a decision must be made [8]. In software engineering, the
requirements of a new system are incomplete before the
users have started to use it [9], and may remain the subject of
change and uncertainty thereinafter. Nevertheless, decision
makers have to make decisions under such uncertainties.
The uncertainties include uncertainty about development
resource availability, the impact of dynamic and frequent
changes in the overall software development life cycle, and
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the accuracy of the software project estimation. Underesti-
mated or ignored uncertainties may elevate risk, and might
even result in project failure [9].

Previous NRP work was concerned with point-based
estimation. Point based esitmates are specific values (rather
than intervals of “confidence”), estimated by human re-
quirements engineers [2], [10], [11], [12]. In this previous
work, the attributes of requirements and stakeholders are
quantified as explicit values, and requirements uncertainty
is either underestimated or completely overlooked [13]. For
example, given a set of quantified requirements, although
point-based estimation approaches can provide optimal so-
lutions in terms of expected cost and revenue, they fail
to offer an assessment of the confidence of such results.
Thus, they may mislead the decision maker and amplify
the consequences of risk.

The impact of uncertainty could be mitigated by per-
forming mathematical measurement methods and scientific
risk management methods. Sensitivity analysis is one such
risk management method, and has been applied previously
in search-based requirements engineering [4], [15]. In this
previous work, sensitivity analysis was performed on solu-
tions generated by an approximate algorithm to capture the
sensitivities of requirements attributes and their effect on
candidate solution uncertainty. However, sensitivity anal-
ysis can only provide information on the sensitivities of
parameters. It does not generate robust solutions that are
‘robust’ in the sense that they can tolerate the changes in
circumstances that uncertainty makes inevitable.

Instead of discovering the sensitivity characteristics of
the problem, robust optimisation is an operational research
framework that explores the solution space and takes un-
certainty into account simultaneously [16], [17]. Paixão et
al. and Li et al. introduced concepts from the literature
on robust optimisation to cater for the uncertainty in NRP
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requirement decisions [18], [19]. They reported robust NRP
solutions, but did not guide decision makers to select solu-
tions from thousands of candidates offered. Moreover, the
algorithms they adopted are inexact, with a potential conse-
quence of information loss due to suboptimal solutions. In
order to aid decision support in the early stages of software
engineering, we develop a decision support framework for
Next Release Problem (called METRO), which utilises both
a simulation-based robust optimisation approach and in
parallel with an alternative traditional point-based opti-
misation approach. Our approach involves a novel exact
algorithm combined with a Monte-Carlo Simulation (MCS)
to deal with algorithm non-determinism and to capture
requirements uncertainty. Our approach eliminates algorith-
mic uncertainty, and explicitly helps decision makers to un-
derstand and make the trade-off between uncertainty/risk
and conventional objectives of cost & revenue.

To handle requirement uncertainty, METRO takes into
account the quantified cost and revenue of requirements as
well as the Probability Density Function (PDF) of uncertain-
ties associated with these requirement attributes (cost and
revenue). With the aid of a PDF of uncertainties, METRO
uses MCS to simulate uncertainties in terms of their impact
on specific objectives. A set of solutions is subsequently
picked by METRO’s exact optimisation technique. METRO
quantitatively analyses the outcomes of its own optimisa-
tion phase, and interprets the findings through a set of visu-
alisations. These visualisations depict the tension between
two different objectives in the presence of uncertainty, and
illustrate the characteristics of requirements regarding the
design space. This information allows decision makers to
understand the impact of uncertainty and to determine each
requirement’s priority.

The paper’s primary contribution is to introduce exact
multi-objective dependence-respecting NRP solver to deal
with algorithmic uncertainty and requirements uncertainty,
although we also believe that METRO’s visualisations are a
potentially useful secondary contribution. More specifically,
the following contributions are made:

1) The first contribution is about eliminating algorith-
mic uncertainty. We develop an exact NRP optimisa-
tion solver: Non-dominated Sorting Conflict Graph
based Dynamic Programming algorithm (NSGDP)
for our framework METRO. Our experimental stud-
ies reveal that, with the aid of NSGDP, the decision
maker can avoid information loss (without which
we show that, for an example real world require-
ments problem, he or she will lose up to 99.95% of
the optimal solutions and will make up to 36.48%
inexact requirement selection decisions as a result).
Furthermore, for the RALIC study, the execution
time of NSGDP is better than NSGA-II which is
currently the best performing NRP solver according
to a recent empirical study [20]. However, this is
only a result from a single set of requirements, and
so we cannot claim overall superior performance,
based on this single study.

2) The second contribution is our introduction of
an approach to cater for requirements uncer-
tainty. METRO investigates the difference between

the optimal-yet-risky solutions and robust-yet-
suboptimal solutions. Two indicators are used: ex-
pected risk premium and risk reduction. Our ex-
perimental results show that, for RALIC NRP in-
stances, developing a software project based on an
optimal-yet-risky release plan rather than robust-
yet-suboptimal release plan, increases by 10% the
probability of overrunning (more than 150% bud-
get) while gaining less than 0.39 utility in return
“the expected risk premium”.

3) The third contribution is that the proposed frame-
work can better support decision makers in un-
derstanding the requirements selection problem. A
series of quantitative techniques is provided for
highlighting the characteristics of requirements and
solutions. The difference of requirement selection
probability between two NRP approaches is anal-
ysed and presented in a stacked bar plot. We
found that risk-aware simulation-based NRP model
(simulation-NRP) is more likely to include require-
ments with low uncertainty than point-based esti-
mated NRP model (point-NRP) does.

The structure of the rest of the paper is organised as
follows: Section 2 briefly describes the background of this
paper, including the problem statement of NRP in general,
the simulation-NRP, Requirements Interaction Management:
Conflict Graph, and core NRP solver: Nemhauser-Ullmann
Algorithm. Section 3 formally defines the NRP decision
analysis framework which implements our approach. Sec-
tion 4 presents the research questions, and answers these
research questions by applying the proposed framework
on three synthetic NRP instances. Section 5 evaluates the
threats to validity for our framework, and Section 6 dis-
cusses the related work in which our work is located. Section
7 concludes the paper and suggests future work.

2 BACKGROUND

Before introducing our NRP decision analysis framework,
we first describe the problem statement of the NRP in
general, as well as the improved NRP model: simulation-
based NRP. Subsequently, a Requirements Interaction Man-
agement model: Conflict Graph is presented to con-
struct requirement dependencies, followed by introducing
Nemhauser-Ullmann Algorithm, which is the NRP solver
used in our framework.

2.1 Next Release Problem Statement

In this subsection, we depict the problem statement of
classic NRP (we use a standard formulation of the problem).
In requirements analysis and optimisation, deciding which
requirements should be included in the next release of a
software system is critical for the software project. In the
context of Search-based Software Engineering (SBSE), the
term NRP was suggested by Bagnall et al. [2] in 2001.
The aim of NRP is to search the feasible and (near) ideal
combinations of requirements to balance the requests from
different stakeholders, and the constraints, by applying
various meta-heuristic algorithms. The set of stakeholders
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is denoted by Eq.1 and the set of possible requirements is
denoted by Eq.2.

C = {c1, · · · , cm} (1)
R = {r1, · · · , rn} (2)

where m is the number of stakeholders, and n is the number
of requirements.

During software development, some resources (e.g., hu-
man resources and facility resources) need to be allocated to
satisfy each requirement. In the context of cost-value based
NRP, cost is used to measure the amount of resource needed
to fulfil the requirements as given by Eq.3.

Cost = {cost1, · · · , costn} (3)

There is a weight vector that reflects the degree of im-
portance of each stakeholder for the company. The relative
weight vector related to each stakeholder c (1 ≤ j ≤ m) is
denoted as Eq.4:

Weight = {w1, · · · , wm} (4)

subject to: wj ∈ [0, 1], and
∑m

j=1 wj = 1.

It is assumed that the importance of each requirement
for each stakeholder is different. Given a stakeholder, the
level of satisfaction of this stakeholder is based on the
requirements that are satisfied in the next release of the soft-
ware system. Based on this assumption, each requirement ri
(1 ≤ i ≤ n) is assigned a value (ri, cj) by each stakeholder
cj (1 ≤ j ≤ m). The overall revenue of a given requirement
ri (1 ≤ i ≤ n) for the company is denoted by Eq.5

Revenuei =
m∑
j=1

(wj · value(ri, cj)) (5)

In NRP, the solution is presented as a decision vector
~x = {x1, · · · , xn} ∈ {0, 1}n to determine the requirements
that are to be selected in the next release. In this vector, xi is
1 if requirement i is selected and 0 otherwise.

Then, a single objective NRP, which intends to maximise
commercial profits within a limited cost budget, is formu-
lated as the following equation (Eq. 6 and 7).

Maximise Objective(~x) =
n∑

i=1

(xi ·Revenuei) (6)

Subject to Constraint(~x) =
n∑

i=1

(xi · Costi) ≤ b (7)

where b is the project budget.

To allow the decision makers to understand the trade-
off between two conflicting objectives, the Multi-Objective
version of NRP (MONRP) treats the budget as another
objective for optimisation instead of a constraint [12]. Thus,
the formulation of MONRP can be represented as follows:

Minimise Cost(~x) =
n∑

i=1

(xi · Costi) (8)

Maximise Revenue(~x) =
n∑

i=1

(xi ·Revenuei) (9)

2.2 Simulation-based Next Release Problem Statement

The traditional formulation of NRP computes the model
parameters and objectives using point-based estimated val-
ues (exact numbers). As a result traditional NRP models
(abbreviated to point-NRP hereinafter) overlook any con-
cealed uncertainties under the expected parameter values.
To overcome this limitation, simulation-NRP, a robust NRP
model, is suggested by Li et al. [19] in 2014.

In simulation-NRP, the uncertainties concerning the
model parameters are extracted as probability distributions.
Besides, the solutions on Pareto-front contain, not only the
expected quality of objectives, but also the probability of
achieving the quality. This approach offers a probabilistic
point of view for decision makers, and allows decision
makers to flexibly balance the trade-off between the quality
of software release plan and its probabilistic robustness.

Before performing simulation-NRP, one should ensure
that human domain experts have elicited probability dis-
tribution of model parameters by a prior risk analysis. Once
the probability distribution of parameters is determined,
simulation-NRP utilises Monte-Carlo Simulation (MCS) [21]
to sample a large number of simulation scenarios of model
parameters by their underlying probability distribution. The
requirements scenarios are presented as a matrix S (Eq. 10):

S =


(R,C)1,1 (R,C)2,1 . . . (R,C)n,1
(R,C)1,2 (R,C)2,2 . . . (R,C)n,2

. . . . . . . . . . . .
(R,C)1,p (R,C)2,p . . . (R,C)n,p

 (10)

where n is the number of requirements, and p is the number
of scenarios. The tuple (R,C)i,k denotes the revenue R and
cost C of the ith (1 ≤ i ≤ n) requirement in the kth scenarios
(1 ≤ k ≤ p).

Then according to the generated simulated scenarios,
decision makers can use simulation-NRP to estimate the
expected value of objectives as well as other interesting
measures, such as the expected revenue of alternative (Eq.
11), the expected cost of alternatives (Eq. 12), and probability
of budget overrun (Eq. 13),

Exp Revenue(~x) =
n∑

i=1

(xi ·
∑p

k=1Revenuei,k
p

) (11)

Exp Cost(~x) =
n∑

i=1

(xi ·
∑p

k=1 Costi,k
p

) (12)

Risk(~x) = P(actual cost(~x) > θ · Exp Cost(~x)) (13)

where p is the number of scenarios, θ is the extent of budget
overrun assigned by the decision maker (e.g., θ = 150%),
and P measures probability.
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Drawing support from such probabilistic objective for-
mulations, simulation-NRP can simply compute arbitrarily
complicated parameter probability distributions and ex-
plore the feasible solutions in terms of these intuitive ob-
jectives (Eq. 14, 15, and 16).

Objective1(~x) = Minimise Exp Cost(~x) (14)
Objective2(~x) = Maximise Exp Revenue(~x) (15)
Objective3(~x) = Minimise Risk(~x) (16)

2.3 Next Release Problem with Conflict Graphs

In practice, there may be different constraints between the
requirements in NRP. These constraints describe the rela-
tionships between the various requirements [22]. Mutual
exclusion is a typical constraint, which denotes at most one
of the two mutually exclusive requirements can be selected
simultaneously. In graph theory, conflict graphs are usually
used to construct such logical relations between objects.
More precisely, a conflict graph G contains a set of vertices
and edges between two vertices (Eq. 17):

G =(V,E)

V ={vi}
E ={(vi, vj)|The vi and vj is mutually exclusive}

(17)

where V is the vertex set, in which each vertex represents
a distinct object, and E is the edge set, in which each
edge means two connected vertices exclude each other (thus
cannot be selected at the same time). The isolated vertices
denote that those vertices can be selected with every other
isolated vertex at the same time.

Conflict graphs have been successfully applied to
Knapsack-like Problems with Conflicts [23], [24], [25], which
are strongly NP-hard in general. Moreover, in 2009, Pfer-
schy and Schauer [26] proved that forming Knapsack-like
Problem with Conflict Graph (KCG) in the search tree
can carry forward fully polynomial time approximation
schemes (FPTAS). Accordingly, it is promising to model
NRP in the form of the conflict graph, and then reconstruct
it to search tree. We would interpret how to construct NRP
with conflict graph to the search tree exemplified by the
general knapsack-like problem.

To reconstruct a knapsack-like problem from a conflict
graph data structure to a search tree data structure, the first
step is processing G in depth-first-search. Then picking a
constrained vertex vi (conflicting with vertex vj) to distin-
guish the problem into two sub-problems from top-down:

• Necessarily including vi in the sub-problem, and
excluding vj

• Always excluding vi in the sub-problem, and keep-
ing the decision concerning vj open.

Mathematically, the process of constructing problem tree
is presented as follows.

Definition 1. G \ v means subtracting a vertex v ∈ V from
graph G: G \ v = (V ′, E′), where V ′ = V − {v} and E′ =
{(vi, vj) | (vi, vj) ∈ E, vi ∈ V ′, vj ∈ V ′}.

Definition 2. For graph G = (V,E) and a vertex v ∈ V , C(v)
represents a set of objects including v and those have constraints
with v: C(v) = {u ∈ V | u = v or (u, v) ∈ E}.

When all leaves of the root problem tree have no edge
at all (|E| = 0), the problem is solved bottom up. The
procedure of solving KCG is described in Algorithm 1. In
Algorithm 1, if G has no constraints at all (|E| = 0), then
solve the problem using dynamic programming, otherwise
the problem G is divided into two sub-problems G \ v and
G \ C(v) with respect to a chosen constraint v. The former
one assumes v is not selected in all of the solutions and
the latter one assumes v selected, thus all the objects that
conflict with it cannot be selected in the final solutions and
are removed from the problem as well (C(v) contains the
objects that have connections with v). After these two sub-
problems are solved recursively, the algorithm sets xv = 1 in
all of the Pareto solutions for the second sub-problem, since
v is assumed to be selected in the second sub-problem. At
last the algorithm merges these two sets of non-dominated
solutions together and removes those being dominated to
form the Pareto solution set for the problem G.

Algorithm 1 Solve KCG S = Solve(G)

Require: conflict graph G = (V,E)
if E = ∅ then

return KnapsackProblemSolver(G)
end if
Pick v ∈ V that has an edge in E
S0 = Solve(G \ v)
S1 = Solve(G \ C(v))
for all ~s ∈ S1 do

set v selected: sv = 1
end for
return S = Merge(S0, S1)

2.4 Nemhauser-Ullmann Algorithm
To solve NRP exactly, we build an exact NRP solver NSGDP
using the Nemhauser-Ullmann algorithm to solve specific
instances in a decision tree solution space. The Nemhauser-
Ullmann algorithm is a dynamic programming algorithm
proposed by Nemhauser and Ullmann in 1969 [27]. It is a
non-dominated sorting based multi-objective exact optimi-
sation algorithm on enumerating the Pareto set of knapsack-
like problems [28]. However, it has an obvious drawback. It
cannot deal with knapsack-like problems with constraints.
Harman et al. [4] employed it to materialise an exact NRP
solver that focuses on NRP with the independent require-
ment.

For a given NRP problem with n requirements, the
Nemhauser-Ullmann algorithm starts with considering 0
requirements, and then iteratively inserts the next require-
ment i into the every solution in the Pareto-front P (i − 1),
where P (i − 1) denotes the Pareto-front of first i − 1
requirements. After merging two solutions to set P ′(i) =
P (i − 1) ∪ (P (i − 1) + i), the Nemhauser-Ullmann algo-
rithm uses non-dominated sorting (the so-called staircase
function) to compute the Pareto-front of first i requirements
P (i) = Non-dominated-Sorting(P ′(i)). P (i−1)+ i denotes
the set of solutions that is obtained by setting the ith
requirement to be selected for all solutions from P (i − 1).
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Following these steps, the final result P (n) is computed in-
ductively. Summarising, the Nemhauser-Ullmann algorithm
is formalised by Algorithm 2:

Algorithm 2 Nemhauser-Ullmann algorithm for NRP

Require: A set of n requirements
for i = 1, .., n do

P ′(i) = P (i− 1) ∪ (P (i− 1) + i)
P (i) = Non-dominated-Sorting(P ′(i))

end for
return P (n)

3 SIMULATION NRP DECISION ANALYSIS FRAME-
WORK METRO
Multi-Objective NRP approaches produce a Pareto-front
which may contain a large number of solutions. It is labori-
ous for engineers to understand and identify one solution
from thousands of candidate solutions, especially taking
uncertainty into account. To aid decision makers to tackle
the latent information within optimal solutions, this paper
proposes a simulation NRP decision analysis framework,
METRO. Instead of merely generating the optimal solu-
tions themselves, METRO statistically analyses the optimal
solutions, mines information from them, and provides the
insight of these solutions. The main processes of METRO
(Figure 1) are:

1) Pre-processing the requirements dependencies.
2) Adopting simulation-NRP and point-NRP to model

the requirements analysis problem separately, and
then using exact optimisation solver (NSGDP) to
produce the optimal solutions.

3) Statistically analysing results of two solutions, and
visualising the refined information as well as the
implicit requirement pattern for decision processes.

4) Performing this analysis in the next iteration.

3.1 Requirements Interaction Pre-Processing
Requirements may depend on each other [29]. Some re-
quirements may interact with other requirements due to
the constraints or limitations that come from techniques, or
business related issues. Requirement implementations may
be mutually exclusive, or should be fulfilled together on the
basis of their interactions. Failure to consider requirement
interactions, may yield infeasible decisions.

Requirements Interaction Management has been pro-
posed to analyse and manage the dependences among
requirements [22], [30]. In NRP, Requirements Interaction
Management involves at least two types of interactions
(And, and Or). The And dependence between two require-
ments means the selections of requirements have to be
in the same release. On the other hand, the selection of
two requirements which have Or dependence is “repelling”
each other because these two requirements are mutually
exclusive. Table 1 presents the mathematical expressions of
these interactions.

Although the original Requirements Interaction Manage-
ment defines the dependencies between requirements, Re-
quirements Interaction Management can be simplified to en-
able fast execution and better convergence. In our proposed

TABLE 1: Requirement Interactions. The sets ξ, and ϕ
present the interaction types And, and Or, respectively. The
set ξ ∩ ϕ = ∅.

And ∀(i, j) ∈ ξ, xi = xj
Or ∀(i, j) ∈ ϕ, xi ∧ xj = 0

approach, the And dependence satisfies ∀(i, j) ∈ ξ, xi = xj .
By transitivity, if (i, j) ∈ ξ and (j, k) ∈ ξ, then xi = xj = xk.
Therefore, a super-requirement Reqi,j,k can be used to rep-
resent requirement i, j, and k in a single decision variable.
This simplification, reduces the computational cost for re-
quirements constraint handling and the search space within
which we seek solutions.

3.2 Exact NRP optimisation Solver

After requirement data pre-processing, decision makers
have to decide which requirements are critical and should
be included in the next release of system under budget
constraints. For this step, the objectives and formulations
should be clearly defined. The conventional criteria for NRP
are maximising the expected revenue and minimising the
expected release cost. Decision makers can also define other
criteria, such as the satisfaction degree of customers, the
fairness level among different stakeholders [10], and the
utility of release.

Taking uncertainty into account, project risk could be an
extra objective to optimise. In a software project, the project
risk is related to future events that may have undesired
consequences for the project [31]. Project risk could include
budget overrun, the number of requirements becoming in-
flated, departure of a key person, and productivity failing
to meet expected estimates [32], [33]. There are existing
risk analysis methods that identify and elicit these soft-
ware project uncertainties quantitatively and use probability
distributions to represent the uncertainty [34]. After these
uncertainties have been elicited, our framework formulates
the fitness function to optimise project risk.

In NRP, such multi-objective decision support problems
can be investigated using a multi-objective optimisation
algorithm. In order to ensure that the variations in results
do not come from the stochastic nature of the algorithm,
we design an exact NRP optimisation solver NSGDP. The
NSGDP uses the Nemhauser-Ullmann algorithm, an exact
dynamic programming algorithm, as the core NRP solver,
and augmented by Conflict Graph to deal with the require-
ments interaction. Firstly, the NRP problem with constraints
is modelled into Conflict Graph. Then, the root problem is
broken down into sub-problems according to Algorithm 1
until there is no constraint in sub-problems. Lastly, Algo-
rithm 2 is used to solve NRP without constraint directly It
is worth mentioning that, our algorithm is applicable to, not
only the case we study in this paper, but also any kind of
knapsack-like problems with exclusive conditions.

To further improve the performance of our algorithm,
we introduce an array to store the processing order. This is
because, when a graph G is divided to two graphs G \ v =
(V0, E0) and G \ C(v) = (V1, E1), G \ C(v) is a sub-graph
of G \ v (V0 ⊃ V1 and E0 ⊃ E1). If further divided, the
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Fig. 1: NRP Decision Analysis Framework: METRO

‘offspring’(s) of G \ v may be exactly the same as G \ C(v),
thus does not need to be solved multiple times.

There is no strict rule of which v should be chosen as
long as it has at least one constraint on it. In our algorithm,
we always choose the vertex v with the biggest degree (has
the biggest number of edges connecting it), thus the number
of edges in G1 is minimised to have a minimal depth of
subsequent dividing.

Figure 2 illustrates the breakdown process of our NSGDP
algorithm with a simple problem instance (Figure 2a). There
are 7 requirements and 5 conflicting interactions in this
instance. The edge connects two requirements means these
two requirements are conflicting with each other. So the
expressions of this instance is V = {r1, r2, r3, r4, r5, r6, r7}
and E = {(r2, r3), (r2, r4), (r2, r5), (r5, r6), (r3, r7)}. For
this instance, the problem is divided based on requirement
r2 firstly. The reason is that r2 conflicts with most require-
ments (r3, r4, and r5), so its degree is biggest (degree 3).
Then the problem is broke down into two sub-problem. The
r2 is not selected in the first sub-problem Gb = Ga \ r2 (Fig-
ure 2b), so r2 and the edges connected to r2 are removed. In
the second sub-problem Gc = Ga \Ext(r2) (Figure 2c), req2
is selected. Accordingly, the requirements have connection
with r2 are removed. The dashed line in Figure 2c denotes
that, in order to solve the problem Gc = Ga \ Ext(r2),
NSGDP firstly solves the right part, and then computes
the optimal frontier of whole problem Gc by merging the
consideration of left part requirements.

Subsequently, NSGDP further divides these two gener-
ated sub-problems. Because there is no edge in Gc (Figure
2c), no further breakdown would be performed on Gc. Since
there are two conflicts in Gb (E1 = {(r3, r7), (r5, r6)}),
and each conflicted requirement has same degree (degree
1), NSGDP picks r3 by requirement id order. Thus, sub-
problem Gb is divided into sub-problems Gd = Gb \ r3
(Figure 2d) and Ge = Gb \ Ext(r3) (Figure 2e). NSGDP
continues to breakdown the problem until there is no further
conflict that can be subdivided. In this instance, there are 5
leaf node sub-problems generated.

After the breakdown process is terminated, the NSGDP
solves the problem from the bottom up. Figure 2j illustrates
the procedure by a dashed line. According to the composi-
tion of problems Gi, Gh, and Gg , the algorithm solves the
Gi first. Then the results of Gi can be used for solving the
other two leaf nodes sub-problem Gh and Gg . Thus, the
re-computation can be avoided by storing previous steps’
results.

3.3 Results Analysis & visualisation
The last step of METRO is to analyse the solutions on two
Pareto-fronts, one of which is produced by point-NRP, and
the other by simulation-NRP. The shape of generated Pareto-
frontier exposes the possible trade-off among all conflicting
objectives.

The shape of Pareto-front helps decision makers to un-
derstand the possible trade-off among all conflicting objec-
tives, yet it does not provide other intelligible information
to interpret the variations among the solutions as well as
the characteristics of requirements. In particular, the number
of solutions on Pareto-front maybe large, thereby requiring
further analysis support to help the decision maker under-
stand the implication for requirement release decisions. By
contrast, METRO performs a series of posterior analysis
procedures to help decision makers to concentrate on the
impacts of requirements uncertainty, most interesting solu-
tions, and most urgent and worthwhile requirements.

In order to assess the impact of requirements uncertainty,
we introduced the concept of the expected risk premium,
which is a variant of the risk premium [35]. This measures
the difference between robust-yet-suboptimal solutions and
optimal-yet-risky solutions. The robust-yet-suboptimal so-
lution is simply that which has the lowest uncertainty
variance in the distribution of possible values. Suppose we
use the point based method to find a particular optimal-yet-
risky solution (a set of requirements), ~a, with given cost,
cost(~a) and value, value(~a). We can find the robust-yet-
suboptimal solution, ~r with cost cost(~r) closest to cost(~a)
that does not exceed cost(~a). This is the greatest lower
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(a) Ga=G (b) Gb=Ga\r2 (c) Gc=Ga\C(r2)+r2

(d) Gd=Gb\r3 (e) Ge=Gb\C(r3)+r3 (f) Gf =Gd\r5

(g) Gg=Gd\C(r5)+r5 (h) Gh=Ge\r5 (i) Gi=Ge\C(r5)+r5

(j) The breakdown procedure (solid line) generated by NSGDP algo-
rithm, and the solving procedure (dashed line) for problem Ga

Fig. 2: The illustration of the subdivision process of the NS-
GDP for an instance with 7 requirements and 5 conflicting
interactions. Figure 2a to Figure 2i are each generated sub-
problem in the subdivision phase. Figure 2j illustrates the
generated sub-problems and the solution path of NSGDP
algorithm.

bound, on robust-yet-suboptimal solutions, bounded by the
cost of ~a. Because the robust-yet-suboptimal solution takes
account of uncertainty, it has a range of possible values,
of which the expected value, value(~r), is simply the most
probable. The expected risk premium is simply the difference
between (value(~a)− cost(~a)) and (value(~r)− cost(~r)). It is

an ‘expected’ assessment of the return that will be lost by
maximally reducing uncertainty. It is thus a way of under-
standing the penalty that is paid for reducing uncertainty in
terms of reduced expected return.

To compute the expected risk premium, a solution compare
pair which contains an optimal-yet-risky solution and a
robust-yet-suboptimal solution should be determined first.
For each robust-yet-suboptimal solution ~r, the optimal-yet-
risky solution from point-NRP, which has the closest cost
to ~r and the cost is not lower than the cost of ~r, is chosen
as the paired solution ~a. Thus, the solution compare pair
is expressed as Pair(~a,~r). An example is illustrated in
Algorithm 3.

Algorithm 3 Generate solution compare pairs

Require: simulation-NRP solution set S1, and point-NRP S2.
set Pairs = ∅
for all ~s1 ∈ S1 do

~s = S2[0]
for all ~s2 ∈ S2 ∧ Cost(~s2) ≥ Cost(~s1) do

if Cost(~s2) < Cost(~s) then
~s = ~s2

end if
end for
Pairs = Pairs ∪ Pair(~s1, ~s)

end for
return Pairs

4 APPLYING OUR APPROACH TO THE RALIC
DATASET

In this section, we illustrate the insights that can be obtained
by applying the proposed framework on a large real-world
example: the RALIC dataset.

4.1 Experimental set up
The detail of dataset, and the targeted objectives of the
experimental study are presented as follows.

4.1.1 Dataset
The RALIC project is an access control system developed
at University College London, UK. This project was estab-
lished in 2009 and deployed in 2011. The requirement data
was collected by using the StakeNet stakeholder analysis
method and StakeRare requirement elicitation method [36].
The implementation cost of each requirement was derived
from the RALIC posterior implementation report. The cost
is represented as the total man-hours spent on the require-
ment during the whole project development life cycle. The
detail information of RALIC data is publicly published at
http://soolinglim.wordpress.com/datasets/.

Because there is no uncertainty information about the
attributes of requirements in RALIC dataset, we synthet-
ically simulated these uncertainties following guidelines
from the literature [6] which advocate a triangle probability
distribution (illustrated in Figure 3). In the early require-
ments engineering phase, due to the lack of definition or
understanding of the requirements to be done, the level
of software cost estimation accuracy ranged from 25% to
400% [37], [38], [39]. According to Jørgensen and Moløkken-
Østvold’s review [39], the Standish Group CHAOS Report
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Fig. 3: Illustration of the triangle probability distribution
[42]. c1 and c2 are the mode (expected) value of probability
distribution P1 and probability distribution P2, respectively.
a1 and b1 is the lowest value and highest of P1 respectively
while a2 and b2 is the lowest value and highest of P2.

[40] indicates that 52.7% of software projects will overrun
the 89% of their original budget estimation. Therefore, in
our study, we define the range of uncertainty for require-
ment cost as [25%, 400%]. There have also been studies on
the accuracy of the software profit estimation or the satisfac-
tion of stakeholders. Michael Bloch et al. study large-scale
IT projects and report that the average benefit shortfall of IT
projects is 56%, but no range is reported. As Fogelstrom et
al. [41] pointed out in 2009, business risk-related uncertainty
has received little attention, which means that we have
little guidance as to the likely bounds we should place
on uncertainty. Therefore, we have allowed for potential
boundary scenarios in choosing our uncertainty bounds.
That is, the range of uncertainty for satisfaction of stake-
holder is defined as [10%, 300%]. We believe that the true
uncertainty value for any realistic project is likely to lie
within this extreme range.

There are two versions of RALIC datasets: ‘PointP’
and ‘RankP’. In this paper, we empirically studied our
framework on the ‘PointP’ dataset, which consists of 143
requirements, 86 And dependencies, and 23 Or dependen-
cies. According to literature [43], the size and complexity
of RALIC NRP instance are representative among the real
world projects. However, it should be noted that there may
still be more elaborate requirements and dependencies in
the real world. Therefore, we cannot claim that RALIC
NRP instances are fully representative of the real world.
To generalise the study, three NRP instances are derived.
There are two boundary scenarios, in which the uncertainty
of a requirement is estimated, either highly optimistically
or pessimistically, and one ‘in-between’ scenario. In highly
optimistic scenarios, the requirements uncertainty is totally
underestimated (mode value equals to the lowest value). By
contrast, the requirements uncertainty is overestimated in
highly pessimist scenarios (mode value equals to the highest
value). After the pre-processing described in Section 3.1,
there are 57 refined requirements, and 4 Or dependencies.

4.1.2 NRP Objective Formulation
In our experiment, three attributes of software release plan-
ning were considered as the optimisation objectives: cost,
satisfaction level, and the probability of budget overrun.
The objective cost and satisfaction level were viewed as
the utility of software release attainment and expressed

as normalisation functions. We assumed that these two
objectives were aggregatable. Thus, the expressions of the
objective cost and satisfaction can be defined as follows (Eq.
18 and 19):

U(~x, cost) =

∑n
i=1(xi · Costi)∑n

i=1 Costi
(18)

U(~x, satisfaction) =

∑n
i=1(xi · Satisfactioni)∑n

i=1 Satisfactioni

(19)

The quality of the solution is measured as the utility
score of the solution (Eq. 20):

Quality(~x) = U(~x, satisfaction)− U(~x, cost) (20)

The expression of the probability of budget overrun
remains the same (Eq. 13). The extent θ is set as 150%.
To reduce the simulations errors introduced by Monte-
Carol Simulation, in our experimental study, the number
of simulations is set as 10, 000.

4.2 Research Questions
To evaluate the METRO framework, we carried out an
experimental study to assess the ability of this approach
to manage the algorithmic uncertainty and capture the
impact of requirements uncertainties. In the experiment,
we demonstrate why the requirements optimisation com-
munity should take care with algorithmic uncertainty, and
how to employ METRO as a tool to assist decision makers
to comprehend the results, thus raising three main research
questions:

RQ1: How effective is NSGDP with respect to elim-
inating algorithmic uncertainty compared to
NSGA-II?

We investigate how much difference can be observed
between the solutions found by NSGA-II and NSGDP. This
research question is a foundation for applying NSGDP. We
compare the solutions found by NSGA-II with the bench-
marks which are found by NSGDP. The differences between
NSGA-II solutions and benchmarks reveal additional (un-
necessary & unhelpful) uncertainty introduced by NSGA-II.

RQ1.1: How close are the solutions found by NSGA-II
to the ones found by NSGDP in objective space?

RQ1.2: Comparing the solutions provided by NSGDP
and NSGA-II, how much difference can be ob-
served in design space?

The remaining research questions are more concerned
with scrutinising the impact of uncertainty that came from
requirement itself.

RQ2: After eliminating the algorithmic uncertainty by
using NSGDP, what is the impact of the require-
ments uncertainty?

This question can be expressed in a quantified manner as
to how much expected risk premium can be obtained when
a decision moves from an optimal-yet-risky solution to a
robust-yet-suboptimal one under the same budget.

RQ3: After eliminating the algorithmic uncertainty by
using NSGDP, is there any pattern between the
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requirements characteristics and requirements
inclusions? If so, what kind of pattern can be
observed?

The third research question investigates the possible
insight of the requirement characteristics, which may help
decision makers to concentrate on the most interesting prop-
erty of requirements. This question is composed of two more
detailed sub-questions (RQ3.1, and RQ3.2):

RQ3.1: Which requirements are the most sensitive, so
require the closest attention from the decision
makers?

RQ3.2: Which requirements have the same inclusion
behaviours, and can thus be clustered together?

4.3 Experiment Results
In this sub-section, we present the results of the exper-
imental study, and provide a decision analysis guidance
for decision makers by interpreting the research questions
sequentially and separately.

4.3.1 RQ1: How effective is NSGDP with respect to elimi-
nating algorithmic uncertainty compared to NSGA-II?
RQ1.1 How close are the solutions found by NSGA-II to the
ones found by NSGDP in objective space?

We answer this question by comparing the quality of
solutions found by NSGA-II and NSGDP. Four quality indi-
cators are used: the percentage of optimal solutions found;
the relative hypervolume of the solution set; the percentage
of revenue loss that is measured by comparing the rev-
enue between NSGA-II solution and the NSGDP solution
(1 − Revenue(~s

NSGA−II
)

Revenue(~s
NSGDP

) ), and the execution time. Figure 4a
and 4b present three quality indicators of the solutions
generated by NSGA-II in objective space. The execution
times of NSGA-II and NSGDP are reported in Figure 4c
and 4d. We study the effectiveness of NSGA-II and NSGDP
on three synthetic NRP instances. We execute NSGA-II on
each instance over 30 runs. In order to intuitively observe
the differences, in Figure 4a and 4b, we report only the
proportion of optimal solutions, and relative hypervolume
of Pareto-front found by NSGA-II.

RQ1.1 can be answered with Figure 4. In all cases,
there are thousands of solutions on the true Pareto-fronts.
In all three RALIC instances, the relative hypervolume of
solutions found by NAGA-II ranges from 98.68% to 99.96%
– fairly close to the optimal solutions. It denotes that, in
our study, NSGA-II is able to find the solutions with a
good convergence near the true Pareto-optimal front. This is
because we allowed NSGA-II to use sufficient computation
resources with 1000 population and 1000 generations. How-
ever, with respect to the number of optimal solutions found,
NSGA-II may fail to find at least 73.03% of the optimal
solutions. The percentage of missed optimal solutions can
be yet up to 99.95% when considering uncertainty as an
extra optimisation objective. Therefore, despite the fact that
the convergence of NSGA-II is close to true Pareto-front
for NRP, the randomness of NSGA-II makes it difficult to
find complete optimal solutions. Moreover, compared to the
inexact algorithm currently proposed to NRP, NSGDP saves
15.21% lost revenue on average for the RALIC dataset. It

reveals that additional uncertainty is introduced to solutions
by the algorithm itself. Additionally, according to Figure
4c, when decision makers do not consider requirements un-
certainty, they can get response from NSGDP immediately
(0.37s on average), and wait for up to 616.93s to get results
from NSGA-II. If decision makers take requirements un-
certainty into consideration, NSGDP is (35.33s on average)
still faster than NSGA-II (675.26s on average) in general
(Figure 4d).

RQ1.2 Comparing the decisions provided by NSGDP
and NSGA-II, how much difference can be observed in
design space?

According to the answer of RQ1.1, we can see that, even
through NSGA-II converges to the true Pareto-front in ob-
jective space, it can find only a small proportion of optimal
solutions. However, it is possible that such a small difference
in objective space is caused by a prominent difference in
design space. In order to investigate the hypothesis, we
intend to inspect the requirements selection probability, which
we define as the chance of requirement being included in
the entire generated solution set. Therefore, we compare
the overall requirements selection probability provided by
NSGA-II and NSGDP, and analyse how much chance that
the requirements decision is wrong when applying NSGA-
II instead of exact approach. The probability of getting
wrong requirements decision is measured by the difference
of the requirements selection between NSGA-II solutions
and benchmarks regarding to each requirement. Figure 5
pictures the chance that NSGA-II gives wrong requirements
decision with respect to each requirement and the overall
probability. It depicts the essential impact raised from using
an approximate algorithm.

In RALIC experimental study, due to the effects of ran-
domness from an approximate algorithm, in different runs,
the requirements selections are volatile. According to Figure
5, requirements uncertainty would aggravate the impact of
the inexactness of NSGA-II in general. In all instances, the
probability of receiving a wrong decision in simulation-NRP
is almost double than that of point-NRP. Therefore, in the
present algorithmic uncertainty, requirements uncertainty
places decision makers at more serious risk of getting wrong
requirements decision. We can see that, in an ‘in-between’
scenario, the upper bound of the chance of getting wrong
requirements decision could rise from 16.25% to 36.48%,
and the median overall chance rises from 2.01% to 10.94%).
Even if it were possible that in a particular run or particular
scenario NSGA-II can offer a minor wrong decision, the
non-determinism makes it produce a different answer in
a different run. The erratic result may result in providing
completely disorganised decisions. It emphasises that deci-
sion makers definitely should raise concerns about the im-
pact of the stochastic algorithm on requirements selection.
It is noteworthy that such impact implies some patterns.
We found that the chance of getting a wrong decision
is negatively correlated with the implementation cost of
requirement (Spearman ρ up to 0.72 and p � 0.0001). That
is, the larger the requirement implementation cost, the less
the chance that making a wrong decision in requirements
selection. There are only three exceptions (Requirement 7,
23, and 38). NSGA-II has nearly perfect match agreement
on these three requirements over three NRP instances. The
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(a) # solution and HV of the results found by point-NRP (b) # solution and HV of the results found by simulation-NRP

(c) The time for executing each approach (point-NRP) (d) The time for executing each approach (simulation-NRP)

Fig. 4: Answers RQ1.1. These figures illustrate the differences between the solutions found by NSGA-II and NSGDP.
Figures 4a and 4b present the differences, based on three quality indicators (number of optimal solutions found, relative
hypervolume, and relative revenue loss). The NSGDP results always correspond to the 100% line, by definition. Figures 4c
and 4d present execution time differences. ‘# solution’ denotes the percentage of optimal solutions, ‘HV’ stands for relative
hypervolume, and ‘RL’ indicates the percentage of revenue loss. The names of instance ‘O’, ‘P’, and ‘B’ stands for the highly
Optimistic RALIC instance, and highly Pessimistic RALIC instance, and ‘in-Between’ RALIC instance, respectively.

reason for this exception may be due to the inherit exclusive-
or dependencies between these requirements (discussed in
Section 4.3.3). (This answers RQ1.2).

In summary, to account for uncertainty in NRP, it is
important for decision makers to understand the source
of uncertainty in solution. Although NSGA-II can generate
approximate solutions with good convergence with respect
to objective space, the results of NSGA-II are still incomplete
and suboptimal. However, the solution quality information
is not meaningful for decision makers when they have to
make decisions for each requirement. Even for the solutions
which are very close to true Pareto-front, the decisions of
selecting requirements are surprisingly distinguishable. In
other words, relying on the requirements selections gener-
ated by NSGA-II would result in misleading the require-
ment decision. Consequently, the wrong decision would
further cause the failure of a software project. Last but not
least, NSGDP not only can guarantee the exactness of result
but also outperform NSGA-II by offering a faster response
to decision makers. This enables decision makers to receive
feedback from our framework instantaneously. All of the
above results emphasise the value of NSGDP, thus, answer-
ing why the requirement optimisation community should
consider the exact approach, and promote the motivation of
our research.

4.3.2 RQ2: After eliminating the algorithmic uncertainty by
using NSGDP, what is the impact of the requirements uncer-
tainty?
After ruling out the algorithmic uncertainty, we would like
to evaluate the impact of the requirements uncertainty. The
results of the analysis are depicted in Figures 6.

Figure 6 statistically explains the impact of requirements
uncertainties on RALIC NRP instance (with 150% budget
overrun). There are 9, 868, 1, 149, and 31, 417 optimal so-
lutions found when considering requirements uncertainty
(sNPR) in a highly optimistic scenario, a highly pessimistic
scenario, and an ‘in-between’ scenario, respectively. And

(a) Expected risk premium (b) Reduction of risk

Fig. 6: The box-plots show how much expected risk pre-
mium and reduction of risk can achieve by taking account
of requirements uncertainty. The names of instance ‘O’, ‘P’,
and ‘B’ represents the highly optimistic RALIC instance, and
highly pessimistic RALIC instance, and ‘in-between’ RALIC
instance, respectively. These figures answer RQ2.

there are 221, 0, and 1, 045 outliers in Figure 6b, and 572,
0, and 967 outliers in Figure 6a. The percentage of outliers is
lower than 5.79%. It could be observed that, overlooking
requirements uncertainty can contribute to suffer up to
10.09% risk that overrun more than 150% budget, and get
at most 0.39 utility in return.

The impact of requirements uncertainty is negligible in
a highly pessimistic scenario. This is because the worst
case requirements uncertainty has been taken into account
in requirements estimation. Taking account of uncertainty
during requirements selection does not matter much for
decision makers.

On the other hand, the impact of requirements uncer-
tainty in a highly optimistic scenario is slightly less than
in an ‘in-between’ scenario. This circumstance probably is
the consequence of involving extremely large uncertainty
in requirements estimation. In general, the principle of
simulation-NRP, which provides robust-yet-suboptimal so-
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(a) Without considering uncertainty (point-NRP - highly optimistic scenario)

(b) Taking account of uncertainty (simulation-NRP - highly optimistic scenario)

(c) Without considering uncertainty (point-NRP - highly pessimistic scenario)

(d) Taking account of uncertainty (simulation-NRP - highly pessimistic scenario)

(e) Without considering uncertainty (point-NRP - ‘in-between’ scenario)

(f) Taking account of uncertainty (simulation-NRP - ‘in-between’ scenario)

Fig. 5: Answers RQ1.2. These box plots show the chance that NSGA-II provides wrong requirements selection decision for
each requirement in RALIC instance. The grey box plot depicts the overall chance of getting wrong requirements decision.
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lutions, is replacing uncertain requirement with appropriate
‘less uncertain’ requirement(s). Meanwhile, all requirements
in a highly optimistic scenario are extremely uncertain.
There is a few relatively ‘less uncertain’ requirements can
be chosen. Accordingly, our framework cannot reduce too
much impact of requirements uncertainty in a highly op-
timistic scenario. In spite of sacrificing a little extra utility
to reduce the risk by a small degree, this still offers decision
makers more options than point-based estimation approach.
For a decision maker, who is risk-averse, this risk reduction
is more valuable than the gained utility for him or her. So the
decision maker will not choose optimal-yet-risky solutions,
and would accept the guaranteed robust-yet-suboptimal
solutions. Otherwise, optimal-yet-risky solutions would be
more attractive for risk-loving decision makers. (This an-
swers RQ2).

In summary, requirements uncertainty would result in
uncertainty for the overall software release plan. In order
to minimise this risk, some loss of perceived utility must
be accepted. The ‘loss’ involved is only a ‘perceived’ loss,
in any case, because it is a loss that only occurs when the
point estimate turns out to be absolutely ‘spot on’. Since
this is unlikely in general (one of the inherent problems of
point-based or ‘spot’ estimates), the loss is therefore only
a ‘perceived’ loss. That is, it is precisely the loss that will
be perceived by an engineer/manager who (unrealistically)
believes that point estimates are always spot on.

4.3.3 RQ3: After eliminating the algorithmic uncertainty by
using NSGDP, is there any pattern between the requirements
characteristics and requirements inclusions?
The previous answer to research question RQ2 offers a
‘macroscopic’ suggestion to a decision maker, helping them
to understand the trade-off among different objectives.
However, the result cannot provide more details about the
nature of requirements, which may inspire decision makers
to prioritise the requirements for further evaluation and
inclusion. To aid this problem, RQ3 promotes a detailed ‘mi-
croscopic’ investigation of requirements analysis for RALIC
dataset.

RQ3.1 Which requirements are the most sensitive, so
require the closest attention from decision makers?

As distinct from conventional sensitivity analysis, here
we take an algorithmic view of the problem. Figure 7
describes the difference in the paired candidate solutions
in terms of the requirements selection probability.

The difference in the paired candidate solutions is de-
fined as follows. For a particular requirement req, set A
denotes the paired solutions that contain req in simulation-
NRP solutions, and set B denotes the paired solutions that
contain req in point-NRP solutions. The intersection of these
sets indicates the number of pairs that contain req in both
parts (set A ∩ B). The height of bar in Figure 7 is the sym-
metric difference of A and B (A4B). More precisely, A \B
is denoted by the height of the red (light grey in black and
white) bar, while the size of B \ A is denoted by the height
of the blue (dark grey in black and white) bar. If the height
of bar is 0, it means the selection of this requirement in all
paired candidate solutions is identical. In this situation, the
result reveals that, although it is unrealistic in general, in this
specific instance the point-based estimate can be relied upon

(even in the presence of the extreme range of risks we model
(10% − 300%), and two boundary NRP instances). From
Figure 7 we observe that 3 of the 57 requirements have this
common property in all instances. For these 3 requirements,
our analysis has thus revealed that we could simply revert to
considering the point-based estimate as sufficiently robust,
even in the presence of extreme risk. However, for the
remaining 54 requirements, our analysis demonstrates the
importance of modelling risk. Another interesting finding
is, in a highly pessimistic scenario, there is no difference
between simulation-NRP and point-NRP methods, and the
difference is minor in the highly optimistic scenario. The
reason has been discussed in Section 4.3.2.

We take Kendall’s τ correlation coefficient to statistically
analyse the correlation between the difference of require-
ments selection probability (percentage (selected sNRP )−
percentage (selected pNRP )) and its own risk in the
highly optimistic and ‘in-between’ scenarios experiments
(where sNRP and pNRP are the abbreviations of simulation-
NRP and point-NRP, respectively). The analysis result shows
that there is a negative correlation between these two at-
tributes (p � 0.001 and τ up to −0.675). Namely, the
requirement with lower uncertainty has more chance to be
selected by a risk-aware approach. Therefore, decision mak-
ers can observe the sensitivity of each requirement from the
perspective of the algorithm. In RALIC experimental study,
Requirement 3 is the most sensitive requirement with re-
spect to 150% budget overrun in both highly optimistic and
‘in-between’ NRP scenarios, while Requirement 19 is the
most sensitive in ‘in-between’ NRP scenarios. By contrast,
Requirements 25, 26, 28, 37, and 46 are more insensitive.
This recommends a risk-averse decision maker to be deeply
concerned with Requirement 3, and assign high priority to
Requirements 25, 26, 28, 37, and 46 (answer RQ3.1).

RQ3.2 Which requirements have the same inclusion be-
haviours, and can thus be clustered together?

With increasing numbers of requirements, it will be
tedious and time-consuming to analyse each requirement
manually. Identifying inclusion behaviours, the tendency
of including a requirement in the solutions on the Pareto-
front as the budget increases, and analysing the differences
between them may allow us to cluster requirements to
reduce cognitive overload. METRO uses a heat-map (Figure
8) to visualise the inclusion of requirements in the solutions
on the Pareto-front with respect to the results generated
by point-NRP and simulation-NRP. Moreover, in order to
measure and highlight the similarities and differences, we
cluster related requirements by computing the complete Eu-
clidean distance among requirements’ inclusion percentage
and present the results of the corresponding Hierarchical
Clustering. This approach is exemplified by the results of
‘in-between’ NRP instance. From Figure 8, we can observe
that there are 4 major clusters identified in the result of both
point-NRP and simulation-NRP, which can help the decision
maker to inspect at a much smaller number of groups of
related requirements. Additionally, instead of prioritising
all requirements, decision makers can first prioritise the
requirements groups before prioritising the requirements
within each cluster.

The answer of RQ3.2 is that, in ‘in-between’ RALIC
instance, Requirement 12 is treated similarly with Require-
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(a) highly optimistic scenario

(b) highly pessimistic scenario

(c) ‘in-between’ scenario

Fig. 7: Answers RQ3.1. The difference of requirement inclusion between robust-yet-suboptimal (simulation-NRP) solutions
and the corresponding optimal-yet-risky solutions (point-NRP) in terms of requirements selection probability.

ment 13, 14, 19, 36 and prioritised as the most critical re-
quirements group by point-NRP approach, while Require-
ment 12 is grouped with 13, 14, 21, 28, 46, and 55 which
are all formalised as the most critical requirements by
simulation-NRP approach. Therefore, in order to gain higher
profit performance while minimising budget overrun risk,
Requirements 12, 13, 14, 21, 28, 46, and 55 should be pri-
oritised as the highest priority requirements group. Strik-
ingly, some requirements could never be selected in any
solution with any budget by the point-based approach. By
looking at these requirements, we find that some of them
(Requirements 3, 7, 23, and 41) participate in exclusive-Or
dependencies. These 4 requirements are strongly dominated
by corresponding mutually exclusive requirements in terms
of optimisation goals. However, there is a nuance in the
results offered by simulation-based approach. The risk-
aware simulation-NRP approach does select Requirement 47

in some circumstances. The possible reason is that, by taking
uncertainty into account, Requirement 47 is more robust
than Requirement 41. Therefore, Requirement 47 can attract
considerable attention when there is abundant budget (i.e.,
50% of total budget) to neutralise its unrewarding tradi-
tional optimisation goals (i.e., revenue and cost).

To sum up, requirement characteristics play an impor-
tant role in their inclusion in the solutions on Pareto-
front. METRO can provide support to help decision makers
identify relations between the different solutions by looking
at the details of each individual solution. With respect to
independent requirements, intrinsic uncertainty negatively
correlates with inclusion when minimising solution risk.
For mutually exclusive requirements, the inclusion of one
requirement relies on the dominance of these requirements’
fitness value. Therefore, the dominated requirements are
seldom selected, compared with their conflicted twin.
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(a) point-NRP (b) simulation-NRP

Fig. 8: Answers RQ3.2. The clustered inclusion trends of requirements where θ = 150%

5 THREATS TO VALIDITY

In this section, we evaluate METRO with respect to its
construct validity, internal validity, and external validity.

5.1 Construct Validity
In this paper, only triangle probability distribution is used
to represent uncertainty. However, there are other kinds
of uncertainties representation that might be used in risk
analysis. For example, Gaussian distribution, uniform dis-
tribution, and discrete probability distribution. Catering for
other distributions would not be a problem: our framework
computes the estimation uncertainties of requirement at-
tributes using MCS, and MCS can simulate most kinds of
uncertainties straightforwardly (by sampling the scenarios
based on input probability distribution directly). Therefore,
METRO could use other kinds of uncertainty distribution to
model the uncertainties of requirements.

5.2 Internal Validity
Internal validity is concerned with any possible factor that
may perturb the experimental evaluations. The perturba-

tions may include inappropriate parameter settings, and the
implementation of algorithms. In our experimental study,
during the experiment, we excluded other system applica-
tions, so the experimental machine only ran our application.
Moreover, the solver of our framework is an exact approach,
thus the stochastic nature of algorithm can be excluded.

In our experimental study, there is one internal threat to
validity concerning the construction of probability distribu-
tion information for the requirements uncertainty. To gather
such information we need access to historical project process
data. However, this may be infeasible for researchers, due
to confidentiality and/or other commercial concerns. The
results shown in the experimental study may be affected
when different probability distributions are used to repre-
sent requirement uncertainty.

The other threat to internal validity is concerned with
the accuracy of the elicited probability distributions of re-
quirements attributes. There are some scientific methods
for eliciting the probability distributions of uncertainties,
but such elicitation is sensitive due to the cognitive biases
of the selected experts [34]. In our paper, due to the lack
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of uncertainty information within the RALIC data set, we
generated the uncertainty distributions for the estimation
error of the requirement cost, informed by a survey from
literature. We cannot know the true estimate uncertainty for
one project. Therefore, to minimise the impact of estimation
accuracy, we study three synthetic NRP instances. There
are two boundary scenarios, in which the uncertainty of
a requirement is estimated either highly optimistically or
pessimistically, and one ‘in-between’ scenario.

Therefore, we believe our framework METRO can solve
real NRP with various uncertainties and provide valuable
insight on decision analysis to decision makers.

5.3 External Validity

In the experimental study reported in the paper, we eval-
uated METRO on three synthetic data sets. These three
data sets are derived from one real world data set from
University College London, which contains two types of
dependencies, and 143 raw requirements. However, the
instances may bring external threats to the generalisability
of our experimental results. The information gap between
synthetic instances and real world instances may lead to a
bias for the evaluation results. The experimental results for
the RALIC NRP instances demonstrate that the proposed
METRO framework can provide insights useful to a decision
maker. However, there is no guarantee that, in all real
world software projects, it would be possible to obtain such
insights. Thus, we cannot generalise this experimental study
to other NRP problems. For generalisation, more work is re-
quired to analyse different scenarios, models of uncertainty,
as well as different NRP formulations.

With regard to scalability, METRO processes the RALIC
dataset (with 57 refined requirements and 10, 000 scenarios).
The mean execution time for one simulation-NRP solver
optimisation is 35.33s, and 0.37s for one point-NRP solver
optimisation. The total execution time for one analysis is
less than 40 seconds on average. The most critical threat for
computational consumption is NSGDP. The running time
of original Nemhauser-Ullmann algorithm is polynomially
bounded in the size of the problem and the number of solu-
tions on the Pareto-front. Since there are thousands of Pareto
optimal solutions on the simulation-NRP Pareto-front, the
execution time for one simulation-NRP optimisation grows
exponentially compared with point-NRP. In addition, the
second heaviest computational consumption is MCS. While
the scale of the problem is increasing, our methods become
more complex and time-consuming. A simple way to ad-
dress this issue would be to reduce the number of scenarios.
Consequently, the computation time will reduce, while the
simulation error will increase. Since this paper focusses on
proposing a novel framework to support decision analysis
with uncertainty in NRP, optimising the performance of this
approach will be an interesting further work.

6 RELATED WORK

6.1 Previous work on Requirement optimisation and
analysis

The term software requirement is defined as “the property
which must be exhibited in order to solve some problem

in the real world” [44]. Essentially, a software requirement
is typically a complex combination of sub requirements to
satisfy different stakeholders and deployment environments
[45]. In our research, requirements optimisation and analysis
focuses on requirements selection and prioritisation.

In the literature, several authors have addressed deci-
sion analysis support for requirements optimisation and
analysis. Saaty [46] introduced Analytical Hierarchy Pro-
cess (AHP) to solve the decision support about planning,
priority setting, and resource allocation in 1980. Karlsson
adopted this approach for software requirements selection
and prioritisation [1] in 1996, and extended it as a cost-
value approach in 1997 [47]. However, the efficiency of
AHP is limited by problem scale since it requires manual
pairwise comparison of requirements. Linear programming
techniques were introduced to assess requirements by Jung
[48] in 1998. The assessment function was formulated as a
single-objective function with a cost constraint function.

The term Next Release Problem (NRP) was coined by
Bagnall et al. [2] in 2001. The NRP aims to search for feasible
and (near) ideal solution set to balance the requests from
different stakeholders by applying various meta-heuristic
algorithms. The NRP was formulated as a single-objective
optimisation problem by Bagnall et al. [2]. Zhang et al. [12]
generalised the single objective NRP to multiple-objective
NRP (MONRP).

6.2 Uncertainty & Risk handling in general
In previous work on the problems of uncertainty, re-
searchers usually adapt quantitative analysis methods, such
as uncertainty analysis [49], to evaluate the robustness of
the “model”. On the other hand, though the uncertainty
analysis can evaluate how sensitive the solutions are to
possible estimation uncertainties, it cannot offer robust so-
lutions by itself, based on decision makers’ degree of risk
aversion. Some authors suggest to investigate uncertainties
during the process of optimisation to immunise solutions
against production tolerances, parameter drifts, and model
sensitivities by robust optimisation rather than adopting the
post-analysis approaches [16], [50], [51].

6.3 Uncertainty & Risk handling in Requirements Engi-
neering
To study the uncertainty in the area of requirements opti-
misation, Harman et al. [15] used a local sensitivity analysis
approach “One-At-a-Time” [52] to analyse the data sensitiv-
ity of NRP and MONRP. This approach measured parameter
sensitivity by perturbing variables upward or downward to
try out various ‘what-if’ scenarios. Al-Emran et al. [53], [54]
performed probabilistic sensitivity analysis to evaluate the
impact of uncertainties in operational release planning and
product release planning in 2010. To avoid stochastic nature
of the meta-heuristic algorithms, in 2014, Harman et al. [4]
applied a naive exact algorithm, a variant of the Nemhauser-
Ullmann’s algorithm [55], to study precise sensitivity analy-
sis of NRP without considering requirements interaction.

In the meantime, independent researchers have devel-
oped different concepts of robustness, measurements for
robustness, and robust optimisation approaches in different
research disciplines. The applications and studies of robust



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 16

optimisation can be widely found in other non software
engineering research literature [56], [57], [58], [59], [60] but
are seldom found in the requirements engineering literature.
In requirements engineering, to the best of our knowledge,
there are only four studies applying robust optimisation on
requirements engineering area.

In 2011, Heaven and Letier first proposed an optimisa-
tion framework, which integrated with stochastic simula-
tion, for guiding the choice of system design solutions on
high-level goals in quantitative Goal Models [61]. In 2014,
Letier et al. applied statistical decision theory to illustrate
the expected information value of model parameters based on
[61] to offer further decision suggestions [6]. Paixão and
Souza were the first authors to introduce a robust optimisa-
tion framework to the NRP problem in 2013 [18]. They used
interval to model the uncertainties of requirements imple-
mentation cost, and defined a small population of scenarios
to represent the uncertainty of requirement value. Thus,
the uncertainty of requirement value is represented as the
discrete variable. Each scenario was assigned a probability
of occurrence. The desired level of robustness of decision
makers was determined by a control parameter. Their robust
NRP model tries to maximise the overall release solution
value with respect to all possible scenarios, while minimis-
ing the implementation cost of release solution with respect
to worst case. Thereby, the outcome of their approach is a
conservative robust solution, which can avoid the impact
of uncertainty in a worst scenario. Li et al. [19] proposed
a simulation-based robust NRP (simulation-NRP) model.
They formalised the uncertainty of requirement cost and
value by Probability Density Function (PDF). Then, Monte-
Carol Simulation was employed to simulate thousands of
scenarios to represent the uncertainties of NRP model. The
consequence of uncertainty was modelled in the probabilis-
tic way (e.g. the probability of project budget overrun) for
monitoring. Finally, a multi-objective optimisation approach
was applied to maximise the value of solution, minimise
the cost of solution in terms of all corresponding scenarios,
as well as minimising the likelihood of occurrence and
the consequences of a given future undesirable event. The
simulation-NRP model enables decision makers to balance
the trade-off among expected cost and value of solutions
based on the solutions’ probabilistic robustness.

6.4 Novelty of our approach
Since it is concerned with uncertainty handling, METRO
exploits robust optimisation to deal with the uncertainty
which is inherent in all requirements optimisation problems.
Compared to the previous work of Harman et al. [4], [15]
and Al-Emran et al. [53], [54], METRO can provide solu-
tions that guard against uncertainty (for different degrees
of the decision-maker’s risk aversion) whereas uncertainty
analysis merely analyses the sensitivity of uncertain model
parameters and their impacts. Our approach, therefore, ad-
vances on previous work by taking account of risk in the
decisions suggested, rather than simply reporting upon its
possible pernicious effects.

METRO is built on an exact algorithm, which is used as
the core NRP solver. Previous work by Heaven et al. [61],
Paixão et al. [18], and Li et al. [19] relied solely upon (non-
deterministic) randomised meta-heuristic algorithms. While

our exact algorithm will always find the optimal solution,
these previously proposed meta-heuristic algorithms may
only find reasonable approximate solutions. While this is
acceptable in general, for the specific problem of handling
risk we face here, it is important for the decision maker to
know that all uncertainty derives from the problem itself
and not from the algorithm used to tackle it. METRO thus
avoids information loss due to the non-deterministic nature
of the approximation algorithm used as the core NRP solver.

Letier et al. [6] seek to overcome the limitations of
approximate meta-heuristic algorithms, by using an exhaus-
tive search as the core solver. Although the exhaustive
search will always find the optimal solution, it is inher-
ently expensive and may not scale sufficiently to be more
generally applicable. For a NRP model which consists of n
requirements, there are 2n solutions in the objective space.
METRO introduces requirements interaction pre-processing
and the conflict graph to augment the previous exact algo-
rithms [27] thereby further enhancing scalability.

7 CONCLUSION

Uncertainty is inevitable in early requirements engineer-
ing. The requirements engineering community has explored
quantitative multi-objective decision techniques and search-
based approaches to produce optimal solutions to require-
ments decision support problems [10], [12], [62], [63]. Deci-
sion makers are informed of possible trade-offs among con-
flicting objectives by visualising the Pareto optimal solutions
generated by these quantitative methods. However, little
work has been done to model design time uncertainties,
to interpret the consequences of those uncertainties, and to
support decision makers in analysing the inherent character-
istics of model parameters [4], [6], [15], [19], [61]. Decisions
that have to be made under incomplete knowledge about
software project.

In this paper, we introduced a decision analysis frame-
work, METRO, incorporating multi-objective simulation op-
timisation techniques, exact optimisation, and uncertainty
analysis, to systematically aid decision support and analysis
in the presence of uncertainty. We argued that eliminating
algorithmic uncertainty may reduce revenue loss. We also
argued that exposing the uncertainties and assessing the
impacts of uncertainties quantitatively (by systematically
analysing the variations between the point-based estimate
approach and a simulation-based approach) can provide
better decision insights than looking at point-based es-
timates alone. Our framework interprets the information
derived from the results of the point-based estimate ap-
proach and a simulation-based approach to address decision
analysis. The derived information allows requirements en-
gineers to judge and weigh the trade-off between relatively
robust-yet-suboptimal solutions and apparently optimal-
yet-risky solutions. It also helps them in identifying highly
‘sensitive’ requirements, according to their robustness. This
enables them to make decisions and evaluate requirements
incrementally. Additionally, our framework also explains
the inclusion patterns of requirements from two points
of view. These patterns could inspire decision makers to
capture elaborate requirement priorities, which can reduce
the cognitive load on the decision maker. Future work will
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conduct more empirical studies as well as applying the
METRO approach to the real world data sets to yield a better
understanding of its value and wider applicability.
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[28] T. Brunsch and H. Röglin, “Improved smoothed analysis of mul-
tiobjective optimization,” in Proceedings of the Forty-fourth Annual
ACM Symposium on Theory of Computing, ser. STOC ’12. New
York, NY, USA: ACM, 2012, pp. 407–426.

[29] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. N.
Dag, “An industrial survey of requirements interdependencies in
software product release planning,” in Proceedings of the Fifth IEEE
International Symposium on Requirements Engineering, ser. RE ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 84–.

[30] W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Requirements
interaction management,” ACM Comput. Surv., vol. 35, no. 2, pp.
132–190, Jun. 2003.

[31] W. Royce, Software project management. Pearson Education India,
1998.

[32] T. DeMarco and T. Lister, Waltzing with bears: Managing risk on
software projects. Addison-Wesley, 2013.

[33] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying soft-
ware project risks: An international delphi study,” J. Manage. Inf.
Syst., vol. 17, no. 4, pp. 5–36, Mar. 2001.

[34] A. O’Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garth-
waite, D. J. Jenkinson, J. E. Oakley, and T. Rakow, Uncertain
judgements: eliciting experts’ probabilities. John Wiley & Sons, 2006.

[35] J. W. Pratt, “Risk aversion in the small and in the large,” Economet-
rica, vol. 32, no. 1/2, pp. 122–136, 1964.

[36] S. L. Lim and A. Finkelstein, “Stakerare: Using social networks
and collaborative filtering for large-scale requirements elicitation,”
IEEE Trans. Softw. Eng., vol. 38, no. 3, pp. 707–735, May 2012.

[37] B. W. Boehm, Software Engineering Economics, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall, 1981.

[38] M. Bloch, S. Blumberg, and J. Laartz, “Delivering large-scale it
projects on time, on budget, and on value,” Harvard Business
Review, 2011.

[39] M. Jørgensen and K. Moløkken-Østvold, “How large are software
cost overruns? a review of the 1994 {CHAOS} report,” Information
and Software Technology, vol. 48, no. 4, pp. 297 – 301, 2006.

[40] J. Lynch, “The standish group report,” http://www.
standishgroup.com/sample research files/chaos report 1994.
pdf, 1994, accessed: 2015-01-12.

[41] N. Fogelstrom, M. Svahnberg, and T. Gorschek, “Investigating
impact of business risk on requirements selection decisions,” in
Software Engineering and Advanced Applications, 2009. SEAA ’09.
35th Euromicro Conference on, Aug 2009, pp. 217–223.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 18

[42] J. C. Felli and G. B. Hazen, “Sensitivity analysis and the expected
value of perfect information,” Medical Decision Making, vol. 18,
no. 1, pp. 95–109, 1998.

[43] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, and S. Brinkkemper,
“An empirical study of meta-and hyper-heuristic search for multi-
objective release planning,” RN, vol. 14, p. 07, 2014.

[44] A. Abran, P. Bourque, R. Dupuis, and J. W. Moore, Eds., Guide to
the Software Engineering Body of Knowledge - SWEBOK. Piscataway,
NJ, USA: IEEE Press, 2001.

[45] I. F. Alexander and L. Beus-Dukic, Discovering requirements: how to
specify products and services. John Wiley & Sons, 2009.

[46] T. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting,
Resource Allocation, ser. Advanced book program. McGraw-Hill,
1980.

[47] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Softw., vol. 14, no. 5, pp. 67–74, Sep. 1997.

[48] H.-W. Jung, “Optimizing value and cost in requirements analysis,”
IEEE Softw., vol. 15, no. 4, pp. 74–78, Jul. 1998.

[49] Z. Zi, “Sensitivity analysis approaches applied to systems biology
models,” Systems Biology, IET, vol. 5, no. 6, pp. 336–346, Nov 2011.

[50] H. Zhang, B. Kitchenham, and D. Pfahl, “Software process sim-
ulation modeling: Facts, trends and directions,” in Software Engi-
neering Conference, 2008. APSEC ’08. 15th Asia-Pacific, Dec 2008, pp.
59–66.

[51] A. Ben-Tal and A. Nemirovski, “Robust optimization methodol-
ogy and applications,” Mathematical Programming, vol. 92, no. 3,
pp. 453–480, 2002.

[52] A. Saltelli, S. Tarantola, and F. Campolongo, “Sensitivity analysis
as an ingredient of modeling,” Statistical Science, vol. 15, no. 4, pp.
377–395, 2000.

[53] A. Al-Emran, P. Kapur, D. Pfahl, and G. Ruhe, “Studying the
impact of uncertainty in operational release planning - an inte-
grated method and its initial evaluation,” Information and Software
Technology, vol. 52, no. 4, pp. 446–461, Apr. 2010.

[54] A. Al-Emran, D. Pfahl, and G. Ruhe, “Decision support for product
release planning based on robustness analysis,” in Proceedings of
the 2010 18th IEEE International Requirements Engineering Conference
(RE’10). Washington, DC, USA: IEEE Computer Society, 2010, pp.
157–166.

[55] G. L. Nemhauser and Z. Ullmann, “Discrete dynamic program-
ming and capital allocation,” Management Science, vol. 15, no. 9,
pp. 494–505, 1969.

[56] M. Li, S. Azarm, and V. Aute, “A multi-objective genetic algorithm
for robust design optimization,” in Proceedings of the 2005 Confer-
ence on Genetic and Evolutionary Computation (GECCO’05). New
York, NY, USA: ACM, 2005, pp. 771–778.

[57] E. Kazancioglu, G. Wu, J. Ko, S. Bohac, Z. Filipi, S. J. Hu, D. As-
sanis, and K. Saitou, “Robust optimization of an automotive val-
vetrain using a multiobjective genetic algorithm,” in ASME 2003
International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. American Society of
Mechanical Engineers, 2003, pp. 97–108.

[58] M. Papadrakakis, N. Lagaros, and V. Plevris, “Design optimization
of steel structures considering uncertainties,” Engineering Struc-
tures, vol. 27, no. 9, pp. 1408 – 1418, 2005.

[59] A. Thompson and P. Layzell, “Evolution of robustness in an
electronics design,” in Evolvable Systems: From Biology to Hardware,
ser. Lecture Notes in Computer Science, J. Miller, A. Thompson,
P. Thomson, and T. Fogarty, Eds. Springer Berlin Heidelberg,
2000, vol. 1801, pp. 218–228.

[60] A. Kumar, A. J. Keane, P. B. Nair, and S. Shahpar, “Robust design
of compressor fan blades against erosion,” Journal of Mechanical
Design, vol. 128, no. 4, pp. 864–873, 2006.

[61] W. Heaven and E. Letier, “Simulating and optimising design
decisions in quantitative goal models,” in Requirements Engineering
Conference (RE), 2011 19th IEEE International, Aug 2011, pp. 79–88.

[62] Y. Zhang, A. Finkelstein, and M. Harman, “Search based re-
quirements optimisation: Existing work and challenges,” in Re-
quirements Engineering: Foundation for Software Quality, ser. Lec-
ture Notes in Computer Science, B. Paech and C. Rolland, Eds.
Springer Berlin Heidelberg, 2008, vol. 5025, pp. 88–94.

[63] Y. Zhang, E. Alba, J. J. Durillo, S. Eldh, and M. Harman, “To-
day/future importance analysis,” in Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation (GECCO’10).
New York, NY, USA: ACM, 2010, pp. 1357–1364.

Lingbo Li is currently a Ph.D student in the
CREST Centre in the Department of Computer
Science at the University College London, under
the supervision of Professor Mark Harman and
Doctor Emmanuel Letier. He received the BSc
degree from Southeast University, China, and
the MSc degree from University of Birmingham,
UK. His current research focuses on applying
search-based techniques on software require-
ments engineering, developing decision support
analysis methods to assist software project deci-

sion makers in semi-automatically analysing, and evaluating large scale
software systems.

Mark Harman is head of Software Systems En-
gineering and director of the CREST at UCL. He
is widely known for work on source code analysis
and testing and was instrumental in the founding
of the field of Search Based Software Engineer-
ing (SBSE), a sub-field of software engineer-
ing which is now attracted over 1,600 authors,
spread over more than 40 countries.

Fan Wu is currently a Ph.D student in CREST
Centre, Department of Computer Science at the
University College London, supervised by Pro-
fessor Mark Harman and Doctor Jens Krinke.
He received his BSc degree from Tsinghua
University, China. He is interested in automatic
software improvement using search-based ap-
proaches, automating the search for best trade-
off between multiple non-functional properties,
and Mutation Testing for memory vulnerabilities.

Yuanyuan Zhang is currently a principal re-
search associate in the CREST centre, Univer-
sity College London. She received her PhD in
Software Engineering from Kings College Lon-
don in 2010. Her research interests include
search-based requirements optimisation, app
store mining and analysis and evolutionary com-
putation. She has published over 20 papers in-
cluding RE and RE journal. She is the co-author
of several invited keynote papers at leading inter-
national conferences, including SPLC 2014 and

ICST 2015. She has served on program committees including GECCO,
SSBSE, AIRE, MOBS, RELENG, RET and as the program co-chair for
SSBSE 2013 and been elected onto the steering committee for SSBSE.


