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ABSTRACT
Uncertainty is inevitable in real world requirement engineer-
ing. It has a significant impact on the feasibility of proposed
solutions and thus brings risks to the software release plan.
This paper proposes a multi-objective optimization tech-
nique, augmented with Monte-Carlo Simulation, that op-
timizes requirement choices for the three objectives of cost,
revenue, and uncertainty. The paper reports the results of
an empirical study over four data sets derived from a single
real world data set. The results show that the robust op-
timal solutions obtained by our approach are conservative
compared to their corresponding optimal solutions produced
by traditional Multi-Objective Next Release Problem. We
obtain a robustness improvement of at least 18% at a small
cost (a maximum 0.0285 shift in the 2D Pareto-front in the
unit space). Surprisingly we found that, though a require-
ment’s cost is correlated with inclusion on the Pareto-front,
a requirement’s expected revenue is not.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements—Specifica-
tions Methodologies

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Software engineering, Genetic algorithms, Multi-objective
optimization, Robustness of solutions, Empirical study
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1. INTRODUCTION
Uncertainty is an inherent characteristic of software engi-

neering, and cannot be avoided [25]. The uncertainties in
software engineering include uncertainty about the actual
implementation cost of a software project, actual revenue of
implemented features, and the possibility that the resulting
product achieves its expected economic performance. Un-
derestimated or ignored uncertainties may bring risks into
software projects.

Previous Multi-Objective Next Release Problem (MONRP)
work was concerned with point-based estimation [11,12,23].
The limitation of point-based estimation is that uncertainty
and risk are either underestimated or completely overlooked
[8]. For example, a requirement engineer may estimate that
the expected cost of a feature is £500 and expected revenue
is £700. The expected net-revenue (expected revenue − ex-
pected cost) is £200. There is a risk that the expected net-
revenue may be lower than a threshold assigned by decision
makers due to uncertainty concerning the true revenue and
cost. The development cost of the feature may exceed £500,
and the revenue of the feature may lower than £700. This
tendency for feature attributes to change has been regarded
as one of reasons why software development is difficult and
expensive [22].

In order to mitigate the impact of uncertainty, previous
work on requirements engineering undertook sensitivity anal-
ysis after optimizing the Next Release Problem (NRP) [14,
16]. Sensitivity analysis was performed on solutions to in-
vestigate solutions’s uncertainty. The most related work to
our study is Paixão and Souza’s work [20]. They formu-
lated the uncertainty of NRP into a scenario-based frame-
work. In their approach, the revenue of requirements have
the same probability distribution: the cost of each require-
ment is quantified in a deterministic continuous interval for-
mat. Though this approach addresses uncertainty, it is lim-
ited by the implicit assumption that the real probability is
universal.

In this paper, we adopt a search-based optimization tech-
nique with Monte-Carlo Simulation (MCS) to address un-
certainty and risk in the early stages of the software engi-
neering development process. Our approach makes explicit
the trade-off between uncertainty/risk and traditional at-
tributes of cost & revenue. It is assumed that the Proba-
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bility Density Function (PDF) of features (in terms of cost
and revenue) has been determined by a prior risk analysis [7].
The paper builds novel formulations of uncertainty to guide
the NRP and presents robust Pareto-optimal solutions to
decision makers. There are two notions of uncertainty mea-
surement introduced: size of uncertainty region [18] and the
failure possibility: the probability that actual cost exceeds a
threshold. There are two definitions of robust solution con-
sidered in the paper: 1) the solution’s payoff (in terms of
cost and revenue) has narrow fluctuation range, 2) the actual
cost of solution has low possibility to exceed the threshold.
Each is ‘robust’ in the sense that it minimizes the risk associ-
ated with a requirement choice. We compute the uncertain-
ties of variables as probability distributions, and simulate
them by MCS. We measure the two kinds of robustness,
and explore the Pareto-front by using multi-objective evolu-
tion algorithm. Our approach can provide the solutions that
balance the trade-off among revenue, cost, and robustness
in a software project.
The main contributions of this paper are the following:

1. The paper introduces two notions of uncertainty mea-
surements for NRP: MCNRP-US (MCS for NRP - Un-
certainty Size) and MCNRP-R (MCS for NRP - Risk)
(Section 3). Each formulation has three objectives for
optimization.

2. The paper is the first paper that addresses robust NRP
by integrating the MCS into the search process itself.
Previous work treats it as a post hoc computation. As
a result, the decision maker has no option to minimize
uncertainty, which is supported by our approach.

3. Results of our evaluation on 4 data sets derived from
the Motorola data set [4] indicate that our approach
reduces risk/uncertainty with very little change to the
traditional 2D MONRP Pareto-front.

The structure of rest of the paper is organized as follows:
Section 2 describes the related work in NRP, robust opti-

mization and sensitivity analysis. Section 3 formally defines
the research problem. Section 4 describes the Monte-Carlo
Simulation & search algorithm used. Section 5 describes
the experimental setup, algorithm configuration, evaluation
methods, and research questions. Section 6 reports the re-
sults of the experiments and analyses the findings. Section
8 presents the conclusion and suggestions for future work.

2. RELATED WORK
The term NRP was introduced by Bagnall et al. [3] in

2001. The NRP aims to search the feasible and ideal solu-
tion set to balance the requests from different stakeholders.
The NRP was formulated as a single-objective optimization
problem by Bagnall et al. [3]. Zhang et al. [23] extended the
NRP to MONRP by formulating revenue and cost as two
objectives.
In terms of uncertainty analysis, researchers usually adapt

quantitative analysis methods, such as uncertainty analy-
sis [24], to evaluate the robustness of the model. Sensitiv-
ity analysis is one uncertainty analysis method. Harman et
al. [16] studied the data sensitivity of NRP and MONRP
by using a local sensitivity analysis approach “One-At-a-
Time” [21]. This approach measured data sensitivity by per-
turbing variables upward or downwards to try out various

what-if scenarios. To avoid potential noise from the inher-
ent character of stochastic of the meta-heuristic algorithm,
Harman et al. [14] applied an exact algorithm, a variant
of the Nemhauser-Ullmann’s algorithm [19], to study the
precise sensitivity analysis of NRP. Al-Emran and Ruhe et
al. [1, 2] applied probabilistic sensitivity analysis which in-
tegrates MCS with process simulation to study the impact
of uncertainty in operational release planning and product
release planning as a post-analysis.

However, Hans-Georg and Bernhard [6] indicated that it
is important to investigate uncertainty during the process
of optimization rather than using post-analysis. They pro-
posed robust optimization [6]. Li [18] introduced a novel
metric of uncertainty for guiding multi-objective optimiza-
tion problem. In his work, the uncertainty of a parameter’s
true value was represented as an interval and the uncertainty
of solutions was represented as tolerance region (uncertainty
size). In 2013, Paixão and Souza used a scenario-based ro-
bust optimization framework for NRP to produce robust
optimal solutions [20].

Our paper is the first paper on Search-Based Software
Engineering (SBSE) [15] to introduce MCS to simulate the
uncertainties of NRP as one of the objectives to guide the
search to explore the robust Pareto-optimal front.

3. PROBLEM FORMULATION
In this section, we describe the definition of the NRP and

the metrics that capture uncertainty in our approach.

3.1 NRP Problem
It is assumed that there is a set of stakeholders and their

features in the next release of a software system. The set
of stakeholders is denoted by Eq.1 and the set of possible
requirements is denoted by Eq.2.

C = {c1, · · · , cm} (1)

R = {r1, · · · , rn} (2)

where m is the number of stakeholders, and n is the num-
ber of features.

In this paper, all requirements are independent of each
other. During the software development, some resources
(e.g., human resources and facility resources) need to be allo-
cated to satisfy each requirement. NRP uses cost to measure
the amount of resource needed to fulfill the requirement as
given by Eq.3.

Cost = {cost1, · · · , costn} (3)

There is a weight vector which reflects the degree of im-
portance of each stakeholder for the company. The relative
weight vector related to each stakeholder c (1 ≤ j ≤ m) is
denoted as Eq.4:

Weight = {w1, · · · , wm} (4)

Subject to: wj ∈ [0, 1], and
∑m

j=1 wj = 1.
It is assumed that the importance of each requirement for

each stakeholder is different. Given a stakeholder, the level
of satisfaction of this stakeholder is based on the require-
ments that are satisfied in the evolved suggestion for the
next release of the software system. Based on this assump-
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Figure 1: The tolerance region of a MONRP solution [18].

tion, each requirement ri (1 ≤ i ≤ n) is assigned a value
(ri, cj) by each stakeholder cj (1 ≤ j ≤ m). The overall rev-
enue of a given requirement ri (1 ≤ i ≤ n) for the company
is denoted by Eq.5.

Revenuei =

m∑
j=1

(wj · value(ri, cj)) (5)

In NRP, the solution is presented as a decision vector x⃗ =
{x1, · · · , xn} ∈ {0, 1} to determine the requirements that
are to be selected in the next release. In this vector, xi is 1
if requirement i is selected and 0 otherwise.

3.2 Robust MONRP formulation
This paper considers two types of robustness in MONRP.

These two definitions of robust solution are “reduction of
the uncertainty size”, and “reduction of the possibility that
actual cost exceeds a threshold” (named “failure risk reduc-
tion”).

3.2.1 Uncertainty Size Reduction (MCNRP-US)
Uncertainty size is used to measure the tolerance region

of the solutions of multi-objective optimization problem in d
dimensions (d is the number of the objectives). For example,
in NRP, ∆costi is an acceptable fluctuation range of the cost
of the ith requirement. The tolerance region consists of the
confidence levels of each fitness value. The confidence level
indicates the most likely fluctuation range of fitness values.
Figure 1 illustrates a tolerance region for a NRP solution
with cost and revenue objective functions. The shaded area
is the tolerance region of the given solution. In Li’s work
[18], the standard deviation of each fitness value is used as
confidence level. Hence, the tolerance region is composed of
the standard deviation of each fitness value.
The size of tolerance region is presented by its normal-

ized hyper-perimeter (Eq.6) and hyper-volume (Eq.7). To
normalize the metric of each fitness value, we need to define
fitness value referent with respect to each objective function.

perimeter(x⃗) =

d∑
k=1

2 ·∆fitnessk(x⃗)

referent fitnessk
(6)

volume(x⃗) =
d∏

k=1

2 ·∆fitnessk(x⃗)

referent fitnessk
(7)

where d is the number of objective functions. Therefore,
all our fitness values lie in a normalized unit space. This
facilitates comparison of Pareto-front using Euclidean Dis-
tance.

Besides, the weighted sum of these two metrics is defined
as the uncertainty size and shown in Eq.8

Size(x⃗) = α · volume(x⃗) + β · perimeter(x⃗) (8)

Where α + β = 1. In this work, we defined α = 0.5 and
β = 0.5.

We named this model as MCNRP-US (MCS for NRP-
Uncertainty Size). The MCNRP-US consisting of the ob-
jective functions can be presented as follows (Eq.9, Eq.10,
and Eq.11):

Maximizef1(x⃗) =

n∑
i=1

(xi · Expected Revenuei) (9)

Minimizef2(x⃗) =

n∑
i=1

(xi · Expected Costi) (10)

Minimizef3(x⃗) = Size(x⃗) (11)

3.2.2 Failure Risk Reduction (MCNRP-R)
In our approach, the risk of a given solution is measured

by the probability that the actual cost exceeds a threshold
determined by the decision maker. In order to reduce the
risk of budget overrun, our second approach minimizes the
probability that actual cost exceeds the budget (Eq.12).

Risk(x⃗) = Pro(actual cost(x⃗) > θ · Expected Cost(x⃗)) (12)

Where θ is the percentage assigned by the decision maker
(e.g., θ = 150%), and Pro means Probability.

This model named MCNRP-R (MCS for NRP-Risk). The
objective functions of MCNPR-R are shown as Eq.9, Eq.10,
and Eq.13:

Minimizef3(x⃗) = Risk(x⃗) (13)

4. OPTIMIZATION APPROACH
Our approach contains two procedures: MCS and multi-

objective optimization. MCS enables us to simulate and
evaluate a large number of scenarios effectively. The output
of MCS process is used by the multi-objective optimization
process. The multi-objective optimization is used to opti-
mize multiple and possibly conflicting objectives simultane-
ously. In this paper, we adopt the NSGA-II algorithm for
optimization.

Monte Carlo Simulation (MCS) [13] is a computerized
mathematical technique to explore the range of possible out-
comes of the model and the probability that these outcomes
will occur. The principle of MCS is to sample a large num-
ber of scenarios generated by substituting the probability
distributions of model parameter values. It then calculates
the results of model for all scenarios.

MCS generates a “scenarios database”: an s × n matrix,
Simulations, where s is the number of scenarios and n is
the number of requirements. The element Simulations[i, j]
denotes the value of requirement j in ith scenario. The
value includes the simulated revenue and the simulated cost
of a given requirement. The number of scenarios was set to
10, 000.

The well-known Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) was introduced by Deb et al. [9]. We use
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Figure 2: Illustration of the triangle probability distribution
and the classification of sensitive and insensitive distribu-
tions [10]. c1 and c2 are the mode value of probability dis-
tribution P1 and probability distribution P2, respectively.
a1 and b1 is the lowest value and highest of P1 respectively
while a2 and b2 is the lowest value and highest of P2. P1 is
considered to be more ‘stable’ (insensitive).

NSGA-II to provide a Pareto-front that captures the trade-
off between cost & revenue and risk (assessed using MCS).

5. EXPERIMENTAL SET UP

5.1 Data Sets
There are four synthetic data sets used in our experiments.

The four data sets are synthetically constructed from one
real project data set from Motorola [4]. The Motorola data
set concerns a set of 35 requirements for hand held commu-
nication devices. Each requirement has the estimated im-
plementation cost and expected revenue level. There is no
uncertainty information for the cost and revenue of require-
ments. Our approaches can accept most kinds of probability
distributions, such as uniform distribution, normal distribu-
tion, and discrete distribution. In this work, we simulated
these uncertainties according to the“triangle probability dis-
tribution” illustrated in Figure 2.
Our four synthetic data sets represent four general scenar-

ios (S1 - S4 ), according to the degree of uncertainty about
requirements’ cost.

S1 Requirements for low cost have low probability to change
(insensitive), while requirements for high cost have
high probability to change (sensitive).

S2 Requirements for low cost have high probability to change
(sensitive), while requirements for high cost have low
probability to change (insensitive).

S3 Requirements for low cost have low probability to change
(insensitive), while requirements for high cost have low
probability to change (insensitive).

S4 Requirements for low cost have high probability to change
(sensitive), while requirements for high cost have high
probability to change (sensitive).

The ith requirement would be classified as low cost re-

quirement if costi <
∑n

j=1 costj

n
, otherwise high cost require-

ment, where n is the number of requirements. We define
low probability as the possible change range is within 100%,
while for high probability it is within 250%. The uncertainty
of each cost is stochastically generated based on the above

Table 1: Illustrative fragment of S1 data

Cost Revenue
NAME Mode Min Max Mode Min Max Sensitivity
REQ 1 100.00 79.42 127.91 3.00 0.65 3.32 insensitive
REQ 2 50.00 15.08 53.51 3.00 1.30 3.95 insensitive
REQ 3 300.00 270.74 1154.15 3.00 0.32 4.76 sensitive
REQ 4 80.00 52.73 105.30 3.00 1.31 5.50 insensitive
REQ 5 70.00 42.00 78.77 3.00 1.66 4.62 insensitive
REQ 6 100.00 87.34 133.04 3.00 1.01 4.19 insensitive
REQ 7 1000.00 620.75 3671.35 3.00 0.77 5.68 sensitive

definitions. The uncertainty of revenue is randomly gener-
ated to have low probability (insensitive). A partial data of
S1 reported in Table 1.

5.2 Search Algorithmic Tuning
We base our algorithmic parameter & tuning on those

used in previous work on MONRP [23]. We used binary
encoding to represent the decision vector. The initial pop-
ulation size was set to 500. The algorithm was run for a
maximum of 50, 000 function evaluations. The genetic oper-
ators used in our approaches are tournament selection (with
tournament size of 5), single-point crossover (with crossover
probability 0.8) and bitwise mutation (with the mutation
probability 1/n where n is the number of requirements).
The algorithm was executed 30 times for each data set, to
cater for the stochastic nature of the algorithm.

5.3 Evaluation

5.3.1 Price of Robustness
In order to measure such loss between the proposed ro-

bust Pareto-front and original Pareto-front with regard to
cost and revenue objectives, we utilized the “reduction fac-
tor” [5] to measure the “Price of Robustness”. This factor
measures the distance between two fronts [16]. To compute
such distance, we defined (A1, · · · , Ap) as the fronta which
contains p solutions, while (B1, · · · , Bq) denotes the q solu-
tions in frontb, where p and q are the number of solutions
in fronta and frontb respectively.

The distance from solution A to solution B is computed
by the normalized objective values and Euclidean Distance.
In the case of “Price of Robustness”, the distance between
solution A and B is defined as:

Dis(A,B) = ±

√√√√ d∑
i=1

(A fiti −B fiti)2 (14)

Where d is the number of objectives. A fiti and B fiti
are the ith objectives value of A and B, respectively.

The distance from solution A to geometrically closest so-
lution B on frontb is presented as the distance from solution
A to frontb (Eq.15).

Dis(A, frontb) = Dis(A,B) (15)

Therefore, the distance from fronta to frontb is the mean
value of the distance from every solution on fronta to frontb.

Dis(fronta, frontb) =

∑p
i=1 Dis(Ai, frontb)

p
(16)
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5.3.2 Probabilistic Sensitivity Analysis
To measure the amount of robustness improvement achieved

by our robust optimization approach, we performed a prob-
abilistic sensitivity analysis. Firstly, we used the same sam-
pling technique to simulate the uncertainties of data. After
that, we adopted robustness formulations defined in our pa-
per to calculate the robustness of Pareto-optimal solutions
of traditional approach.

5.4 Research Questions
In order to evaluate the effectiveness and usefulness of the

approaches, we carried out two experimental studies to as-
sess the efficiency of the approaches and four scenarios to
evaluate its usefulness. In the experiments, we compared
the results obtained from our approaches with the ones ob-
tained from MONRP, and formalized one research questions.
The question is whether the proposed approaches can pro-
vide more robust solutions to decision makers with less sac-
rifice? This question formulated into three more detailed
sub-questions (RQ1 , RQ2 , and RQ3 ).
Additionally, to aid the decision making support before

preforming such professional tools, this paper also investi-
gated the correlations between attributes of a requirement
and its inclusion in solutions on the Pareto-front. This is
formulated into the fourth question RQ4 .

RQ1 Do the proposed two kinds of robust optimization im-
prove robustness? This question will be answered by
analyzing and comparing the robustness of solutions
which were generated by our approaches and the orig-
inal MONRP.

RQ2 How much “Price of Robustness” would be paid for
the proposed robust optimization approaches? We will
answer this question by calculating the distance be-
tween the Pareto-front obtained from our approaches
and those obtained from the original MONRP. The
distance was used to measure the loss in payoff.

RQ3 How similar are the Pareto-fronts produced by our
new approaches and the one produced by traditional
MONRP? We computed and ranked the proportion of
requirements being selected in solutions on the Pareto-
front. Then we used Kendall’s τ correlation coefficient
to statistically investigate the degree of similarity be-
tween the rankings of requirements included in solu-
tions on the Pareto-front to answer this question.

RQ4 Which attributes of a requirement are correlated with
inclusion in solutions on the Pareto-front?

We performed an intuitive analysis to answer the RQ1
and RQ2 , while more statistically analysis to answer the
RQ3 and RQ4 .

6. EXPERIMENTAL RESULTS
& ANALYSIS

This section presents two different robust models and the
results of applying these two models on four synthetic prob-
lem instances. Two experiments were conducted and the
illustrations of results are presented in Figures 3 and 4 (Fig-
ures 3a, 3b, 3c, 3d, and Figures 4a, 4b, 4c, 4d), for E1 & E2
respectively. The two experiments, E1 & E2, are described
below:

Table 2: The Robustness & Comparison of the MCNRP-US
Approach and the Traditional Approach

S1 S2 S3 S4
MCNRP-US 0.1531 0.1558 0.1850 0.1290

Original Approach 0.1983 0.1599 0.1993 0.1511
Price of Robustness 0.0110 0.0201 0.0154 0.0102

Robustness Improvement 22.78% 2.54% 7.19% 14.65%

E1 The first experiment aims at evaluating the MCNRP-
US approach and the “Price of Robustness” of this ap-
proach, when the decision maker expects to obtain ro-
bust solutions within a defined fluctuation range.

E2 The second experiment evaluates the MCNRP-R ap-
proach and its “Price of Robustness” for the situation
in which the decision maker would like to acquire ro-
bust solutions which have a low risk of budget overrun.

In order to compare our proposed approach to the tra-
ditional MONRP approach, the Pareto-fronts of proposed
approach are presented by dark black patterns and tradi-
tional ones by grey (red when viewed in colour) patterns.
This selection quantitatively analysis and answer the RQ3
and RQ4 as well.

6.1 Experiment One (E1)
In E1, the uncertainty size of a solution is taken into ac-

count. The results of E1 are shown in Figures 3a, 3b, 3c, and
3d corresponding to scenarios S1, S2, S3, and S4, respec-
tively. The figures illustrate the three-dimensional Pareto
surface. Each bar represents a solution on the Pareto-front.
The location of each bar in the cost-revenue plane presents
the cost and revenue of the solution respectively. The height
of the bar shows the uncertainty size for each solution.

From the results of E1 for S1, S2, S3, and S4, we observe
that, as the overall fulfilled cost increases, the uncertainty
size of solution also increases. We also observe that there
are minor differences between the Pareto-fronts of MCNRP-
US and the traditional approach in S1 and S4 (Figures 3a
and 3d), while there are larger differences between S2 and
S3 (Figures 3b and 3c). High cost requirements naturally
have more impact on solution sensitivity than low cost re-
quirements [16]. Requirements with high cost are stable in
S2 and S3, and the proposed first approach tends to select
the“stable”solution rather than the solutions just have good
economic performance but “unstable”.

Table 2 presents the results of probabilistic sensitivity
analysis for E1, the “Price of Robustness” for “MCNRP-US”
approach, and how much robustness with regarded to un-
certainty size improved by applying this approach.

Based on the results in this table we answer RQ1 and
RQ2 (forMCNRP-US) as follows: On average, theMCNRP-
US generates more robust solutions with respect to uncer-
tainty size. The overall improvement is not large: after nor-
malizing cost and revenue, the magnitude of standard de-
viation of cost and revenue is small, so the magnitude of
uncertainty size is small. Even so, it is interesting that the
robustness improvements for S1 and S4 (22.78% and 14.65%
respectively) are better than the improvements for S2 and
S3 (2.54% and 7.19% respectively).

Although the improvement of MCNRP-US is not dra-
matic, it pays a little as the “Price of Robustness”. There-
fore, we conclude that applying our MCNRP-US approach,
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(a) The results of E1 in S1 (b) The results of E1 in S2 (c) The results of E1 in S3 (d) The results of E1 in S4

Figure 3: The Pareto-front of MCNRP-US and Original Approach

(a) The results of E2 in S1 (b) The results of E2 in S2 (c) The results of E2 in S3 (d) The results of E2 in S4

Figure 4: The Pareto-front of MCNRP-R and Original Approach

Table 3: The Robustness & Comparison of the MCNRP-R
Approach and the Traditional Approach

S1 S2 S3 S4
MCNRP-R 0.0396 0.0404 0.0109 0.0591

Original Approach 0.0500 0.0755 0.0132 0.0888
Price of Robustness 0.0036 0.0253 0.0003 0.0285

Robustness Improvement 20.82% 46.49% 17.70% 33.37%

the decision maker pays a small price to obtain a more ro-
bust Pareto-front, whose solutions have smaller uncertainty
size.

6.2 Experiment Two (E2)
The results of E2 are plotted in Figures 4a, 4b, 4c, and

4d. In E2, the risk was considered as a third objective.
From the results of E2 in S1, S2, S3, and S4, a general

trend is observed: the degree of risk increases as overall cost
increases. However, there is an interesting observation in
Figure 4b. The risk is inversely proportional to cost. The
reason for this phenomenon is that the risk is directly pro-
portional to the stability of the probability distribution of
cost. The more stable the probability distribution is, the
lower risk there will be. In E2, there are some other in-
teresting observations: According to the results, we observe
that the obtained “robust” Pareto-fronts are quite close to
those obtained from original MONRP in S1 and S3, while
there are a big gap in S2 and S4. This is because the prob-
ability distribution of high cost is unstable in S2 and S4.
Table 3 shows that the robustness with regards to risk

can be noticeably improved by the MCNRP-R approach
compared to traditional approach. Moreover, the payment
(Price of Robustness) is low.
As an overall answer RQ1 and RQ2 (for MONRP-R) we

find that we can achieve an improvement of at least 18%

Table 4: The Correlation of Rankings of Requirements

MONRP&R MONRP&US US&R

S1
τ 0.9361 0.7345 0.7311

p-value < 0.000 < 0.000 < 0.000

S2
τ 0.8646 0.7872 0.8756

p-value < 0.000 < 0.000 < 0.000

S3
τ 0.9655 0.7233 0.7311

p-value < 0.000 < 0.000 < 0.000

S4
τ 0.8646 0.8713 0.8387

p-value < 0.000 < 0.000 < 0.000

In this table, R means MONRP-R, and US means MONRP-US.

in robustness with only a little change in 2D cost-revenue
Pareto-front (maximum 0.0285 in a unit space). That is, the
penalization due to robustness is very small for all scenarios,
which qualifies the effectiveness of MCNRP-R approach.

6.3 Statistical Analysis
To answer the RQ3 and RQ4 statistically, Kendall’s τ

correlation coefficient τ is used to quantitatively analyse the
correlation between and within the approaches. Table 4
shows Kendall’s τ correlation coefficient and corresponding
p-value calculated for the relation between the paired ap-
proach (MONRP and MONRP-R, MONRP and MONRP-
US, and MONRP-R and MONRP-US) with regard to each
scenario. If all solutions in Pareto-front agree on a require-
ment to be selected, the requirement is said to be “closed”
[17]. Here, we generalize this notion of “closed” decision to
investigate correlations between degrees of “closedness”.

The Table 4 reveals that there are existing strong correla-
tions between the rankings of requirements produced by each
approach on each scenario. All τ coefficients are greater than
0.7, and p-values are very close to zero. This confirms that
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Table 5: The Correlation between the Attributes of Require-
ment and its Ranking

Cost Revenue R/C

MONRP τ p−Value τ p−Value τ p−Value

S1 -0.7748 < 0.000 0.0723 0.55358 0.9597 < 0.000

S2 -0.7569 < 0.000 0.1413 0.23846 0.9521 < 0.000

S3 -0.7771 < 0.000 0.074 0.54138 0.9521 < 0.000

S4 -0.7704 < 0.000 0.1346 0.26185 0.9554 < 0.000

MONRP-US τ p−Value τ p−Value τ p−Value

S1 -0.5899 < 0.000 0.0824 0.49827 0.721 < 0.000

S2 -0.6034 < 0.000 0.2336 0.049495 0.7714 < 0.000

S3 -0.5832 < 0.000 0.0924 0.44599 0.7008 < 0.000

S4 -0.6807 < 0.000 0.1765 0.14052 0.8521 < 0.000

MONRP-R τ p−Value τ p−Value τ p−Value

S1 -0.7244 < 0.000 0.1092 0.3661 0.8958 < 0.000

S2 -0.6807 < 0.000 0.1966 0.09972 0.8555 < 0.000

S3 -0.758 < 0.000 0.0924 0.44599 0.9294 < 0.000

S4 -0.674 < 0.000 0.1899 0.11213 0.8521 < 0.000

In this table, Cost is the Expected Cost, Revenue is the
Expected Revenue, and R/C is the Expected Revenue-to-Cost

Ratio.

the rankings of requirements produced by each approach are
similar to each other.
Hence, the Pareto-fronts on Cost-Revenue dimension gen-

erated by each approach are similar to each other. We fur-
ther observe that the correlation is stronger between MONRP
and MONRP-R than MONRP and MONRP-US. This an-
swers RQ3 .
In order to answer RQ4 , Table 5 uses Kendall’s tau cor-

relation analysis to statistically describe the correlation be-
tween the attributes of requirements and the rankings of
requirements. The results reveal that, in general, the re-
quirement’s Revenue-to-Cost ratio and Cost have strong
monotonic correlation with its likelihood of inclusion, while
its Revenue is uncorrelated. The requirement’s Revenue-
to-Cost ratio is the most strongly correlated.

7. THREATS TO VALIDITY
In this paper, our approach applies a multi-objective search-

based technique, which is augmented with MCS, to solve the
NRP in the presence of uncertainty. We evaluated our work
respecting to its construct validity, internal validity, and ex-
ternal validity.

7.1 Construct validity
The threat to construct validity is concerning whether our

approach can deal with the real uncertainty. Our method
utilizes MCS to compute the estimation uncertainties on re-
quirements, and to produce thousands of scenarios to sim-
ulate the actual uncertain NRP parameters. In this paper,
only triangle probability distribution is used to present the
uncertainties, while there are sorely other kinds of uncertain-
ties that might be used in risk analysis. Moreover, the kinds
of uncertainties are used to generate the scenarios whose
attributes are formed as input parameters of MONRP ap-
proach. Hence, it is straightforward to introduce other kinds
of uncertainties to model the uncertainties of requirements.
Our approach aims to handle the uncertainty of NRP by
MCS. MCS can simulate most kinds of uncertainties. Be-
sides, the types of uncertainties can be formed into the re-
quirements by engineers. Therefore, we believe our approach
can be extended to solve the real NRP with various uncer-
tainties.

7.2 Internal validity
The internal validity is concerned with any possible factor

that may perturb the experimental evaluations. Hence, in
our experiments, we exclude other system applications, so
the experimental machine only runs our application. Each
experiment was repeated 30 times to cater for variations
in algorithmic performance. The other potential threat to
internal validity concerns the algorithm parameters tuning
that could have affected the experimental results during the
evaluations. Our work is based on the works of Zhang et
al. [23], and the algorithm parameters have been previously
studied [11] [22].

7.3 External validity
In the experimental study, we evaluated our approaches

over four data sets derived from one single real world data set
from Motorola. There is no uncertainty information within
the Motorola data set. Therefore we simulated the four sce-
narios with uncertainties based on different degrees. Since
we lack a real software engineering problem data set, the
scale of our experiments and number of scenarios remains
insufficient. More work is required to analyse different sce-
narios & models of uncertainty.

In our work, the experimental results did not show any
critical threat to its scalability. Our implementation is able
to process about 10, 000 scenarios in 15s, and each scenario
consists of 50, 000 runs. The heaviest computational con-
sumption is MCS. While the scale of problem is increasing,
our methods become more complex and time consuming. A
simple way to address this issue is to reduce the number
of simulations. Consequently, the computation time will re-
duce, while the simulation error will increase. Since this pa-
per focusses on proposing a novel approach to handle uncer-
tainty in NRP, optimizing the performance of this approach
will be an interesting further work.

8. CONCLUSIONS & FUTURE WORK
In this paper, we introduced an MCS based robust opti-

mization approach for requirement analysis and optimiza-
tion.

We introduced two notions of uncertainty measurements
defined for NRP. According to the experiments upon which
this paper reports, the proposed two robust MONRP ap-
proaches (MCNRP-US and MCNRP-R) overcome the limi-
tation of the traditional MONRP approach which underesti-
mates (or even hides) uncertainty. These allow the decision
maker to choose different approaches for controlling different
types of uncertainty, while retaining the performance of tra-
ditional solutions. The MCNRP-US offers decision makers a
way to control the fluctuation range of payoff for solutions.
The MCNRP-R model helps decision makers to explore so-
lutions with lower risk of budget overrun.

We found that MONRP-R decisions are more closely cor-
related to traditional MONRP decisions regarding require-
ment choice, than MONRP-US. We also find that, while
cost is closely correlated to inclusion of a requirement in the
Pareto-front, revenue is not.

In this paper, only triangle probability distribution uncer-
tainty has been examined. Real world requirement engineer-
ing analysis and optimization problems typically contain a
mixture of types of uncertainties. Hence, future work will
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focus on adapting and evaluating our approach on other real
world scenarios.
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