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Abstract—In software engineering, determining the set of
requirements to implement in the next release is a critical
foundation for the success of a project. Inappropriately including
or excluding requirements may result in products that fail to
satisfy stakeholders’ needs, and might cause loss of revenue.
In the meantime, uncertainty is characterised by incomplete
understanding. It is inevitable in the early phase of requirements
engineering, and could lead to unsound requirement decisions.
To ease the impact of uncertainty in the software development
process, it is important to provide techniques that explicitly
manage uncertainty in requirements analysis and optimisation.

This proposed research aims to provide a decision support
framework for analysing uncertainty in requirements selection
and optimisation. The proposed research involves three stages.
Firstly, a simulation optimisation technique is introduced to
model requirements uncertainty in requirements optimisation.
Then, an exact technique is designed to eliminate the algorith-
mic uncertainty. Lastly, a probabilistic uncertainty analysis is
applied to help the decision maker to understand requirement
uncertainty propagation and the characteristics of requirements
in requirements selection process.

I. INTRODUCTION

The term software requirement is defined as “the property

which must be exhibited in order to solve some problem in the

real world” [1]. Essentially, a software requirement is typically

a complex combination of sub requirements to satisfy different

stakeholders and deployment environments [2].

Determining an appropriate subset of requirements to be

delivered in the next release of a software system is a crit-

ical aspect in software engineering, especially under limited

resources. In 1996, Karlsson innovated Analytical Hierarchy
Process for supporting software requirements selection and

prioritisation [3]. It was further formulated as Next Release

Problem (NRP) by Bagnall et al. [4] in 2001. The NRP models

stakeholders’ objectives quantitatively, and employs optimisa-

tion techniques (i.e., meta-heuristic algorithms, dynamic pro-

gramming) to explore and select a subset of requirements that

is both feasible and well-suited to stakeholders’ requirements.

The problem is similar to the Knapsack Problem, which is

known to be NP-hard [5]. The search space of this problem

increases exponentially with the number of requirements.

Unfortunately, uncertainty is also an inherent characteristic

of the software engineering process [6]. The essence of uncer-

tainty is the lack of complete knowledge at the time a decision

must be made [7]. In requirements engineering, requirements

are uncertain. Requirements are often incomplete, vague and

subject to change. The requirements uncertainties include

uncertainty about the development resource availability, the

impact of dynamic and frequent changes in whole software de-

velopment life cycle, and the accuracy of the software project

estimation. The requirements of a new system are uncertain if

the users have not started to use it [8]. Decision makers have

to make decisions under such uncertainties. Underestimated or

ignored uncertainties may bring risks into software projects,

and might even result in project failure [8].

Over the last decade, various NRP techniques have been

developed in a context where the input requirements’ attributes

are concerned with point-based estimations, which are es-

timated by human requirements engineers [4], [9], [10]. In

those studies, the attributes of requirements and stakeholders

are quantified as explicit value, and requirements uncertainty

is either underestimated or completely overlooked [11]. For

example, given a set of quantified requirements, although

those point-based estimation approaches can provide optimal

solutions in terms of expected cost and revenue, they fail

to offer an assessment of the confidence of such results.

Thus, they may mislead the decision making and amplify the

consequences of risks.

In order to manage the uncertainty in requirements selection

and optimisation, two approaches have been conducted in

previous work. The first approach is sensitivity analysis, which

is an uncertainty handling method. The purpose of performing

sensitivity analysis is to evaluate the robustness of the outputs

of a model in the presence of uncertainty, and to achieve un-

certainty reduction through identifying sensitive model inputs.

Usually, sensitivity analysis applies changes in the input of the

system, and studies what effect this produces on the output.

The second approach is robust optimisation [12]. Robust

optimisation is distinctly different from sensitivity analysis.

Robust optimisation formulates the optimisation problem as

one in which solutions that have a priori ensured robustness are

sought against prescribed uncertainty [13]. Straightforwardly,

robust optimisation explores the solution space and takes

uncertainty into account simultaneously.

On the other hand, to deal with uncertainty, it is important

to know that all uncertainty derives from the problem itself

and not from the algorithm used to tackle it. Nevertheless, the

previous NRP uncertainty management studies adopted non-

deterministic approaches in their framework [14], [15]. These

approaches do not guarantee to find the optimal solutions,

therefore, may return solutions that are worse than optimal.

In other words, there is information loss in the solution,
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and additional uncertainty is thereby introduced. While such

information loss is acceptable in general, for the specific

problem of handling uncertainty we face here, it is important to

ensure that the resulting uncertainty is from the problem itself.

This motivates the usage of exact algorithm for uncertainty

handling. However, the designed exact algorithm is problem-

dependent and it is very time-consuming [16]. The execution

time may increase exponentially respect to the number of input

parameters and the dimensions (number of objectives) of the

problem.

The principal goal of this research is to provide a framework

to manage uncertainty exactly and efficiently in requirements

selection and optimisation. The detailed aims and objectives

of this thesis are as follows:

1) Investigating the feasibility of applying probabilistic

robust (simulate-based) optimisation for managing un-

certainty in NRP.

2) Proposing an exact NRP optimisation technique to guar-

antee to find the optimal solution in a finite amount of

time.

3) Providing a probabilistic uncertainty analysis and quan-

titative analysis framework to help the decision makers

to study requirements uncertainty propagation in require-

ments optimisation process, and interpret the produced

results.

II. EXISTING WORK

This section presents a preliminary literature review to

establish a foundation for undertaking this research. The

research of this work intersects two main research fields,

including the field of requirements selection and optimisation,

and uncertainty handling.

A. Requirement selection and optimisation

Requirements may have different values to stakeholders, and

require different efforts to implement. In an ideal world, all

requirements would be simply selected and implemented in

one release, thereby yielding maximal functionality and value

to stakeholders. However, in practice, resource constraints

need to be taken into consideration. Given a limited budgetary

resource, it is impossible to implement all requirements in

one release. Requirement engineers have to make decision to

determine the priority of requirement and decide whether this

requirement should be implemented in the next release of the

system or not, meanwhile, the outcome of the software system

in the next release can be maximised [1].

Essentially, the requirements selection and prioritisation ac-

tivity are concerned with selecting a subset of requirements to

implement to meet the demands of stakeholders and maximise

the value of delivered software product, at the same time, scale

to ensure that there are sufficient resources to undertake the

development [2]. Such requirements optimisation problem is

recognised as a complex combination problem.

In the literature, various techniques have been developed

to address requirements optimisation problem. Technically,

the requirements optimisation techniques can be categorised

into priority-based requirements optimisation, search-based re-

quirements optimisation, and exact requirements optimisation

[17].

Priority-based requirements optimisation is an intuitive ap-

proach in which the requirements are sorted from ‘best’ to

‘worst’ based on its characteristics or the interests of the

stakeholders. The ranking of requirements implicitly indicates

the priority of requirements. Thereupon then, the developers

can choose the requirements with the highest priority to

implement, accordingly, achieve the earliest satisfaction. Some

priority-based approaches have been proposed in the literature

to support requirements selection and optimisation, such as

AHP [3], [18], Quality Function Deployment (QFD) [3],

and StakeSource2.0 [19], a web-based requirements prioriti-

sation tool that uses ’crowdsourcing’ approach. However, the

priority-based approaches are restricted by: 1) the prerequisite

of that stakeholders should be familiar with at least one of the

prioritisation methods; 2) the required effort is most likely to

be overwhelming.

According to Search-based Software Engineering (SBSE)

which was coined by Harman and Jones in 2001 [5], the

complex, multi-objective, and highly constrained software en-

gineering problems can be formulated as search-based combi-

nation optimisation problem that can be tackled with the search

algorithm. To convert a software engineering problem into a

computational search problem, a fitness function is needed to

measure the quality of candidate software engineering problem

solutions. Naturally, the requirements optimisation problem is

requirements combination problem, and can be viewed as an

application area for SBSE [4], [20], [21].

Bagnall et al. [4] proposed the term Next Release Problem
(NRP), and attempted to formulate requirements selection

and optimisation as a combination-based requirements release

planning problem. The NRP model assumes that there is a

set of stakeholders and their features in the next release of

a software system. The set of stakeholders is denoted by

C = {c1, · · · , cm} and the set of possible requirements is

denoted by R = {r1, · · · , rn}, where m is the number of

stakeholders, and n is the number of features.

During the software development, some resources (e.g.,

human resources and facility resources) need to be allocated

to satisfy each requirement. NRP uses cost to measure the

amount of resource needed to fulfil the requirement as given

by Cost = {cost1, · · · , costn}.

There is a weight vector which reflects the degree of

importance of each stakeholder for the company. The relative

weight vector related to each stakeholder c (1 ≤ j ≤ m) is

denoted as Weight = {w1, · · · , wm}, subject to: wj ∈ [0, 1],
and

∑m
j=1 wj = 1.

The importance of each requirement for each stakeholder is

assumed different. Given a stakeholder, the level of satisfaction

of this stakeholder is based on the requirements that are

satisfied in the evolved suggestion for the next release of the

software system. Based on this assumption, each requirement

ri (1 ≤ i ≤ n) is assigned a value (ri, cj) by each

stakeholder cj (1 ≤ j ≤ m). The overall revenue of a given
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requirement ri (1 ≤ i ≤ n) for the company is denoted by

Revenuei =
∑m

j=1(wj · value(ri, cj)).
In NRP, the requirements selection and optimisation solution

is presented as a decision vector �x = {x1, · · · , xn} ∈ {0, 1}
to determine the requirements that are to be selected in the

next release. In this vector, xi is 1 if requirement i is selected

and 0 otherwise.

On the basis of NRP, several NRP formulations or problem

statements have been investigated recently. For example, deal-

ing with multiple criteria [10], [22], [23], and evaluating the

performance of meta- and hyper- heuristics [24].

Though search-based approaches might provide an approx-

imate solution in a reasonable time and scale well, in special

cases, decision makers need exact approach to guarantee the

exactness of the results. In this research, using approximate

approach to analysis and manage the uncertainty in NRP might

introduce uncertainty from the nature of the algorithms used

to optimise. Therefore, our proposed approach is focusing on

exact optimisation approach.

Exact optimisation method is the optimisation method that

can guarantee to find all optimal solutions. In principle, the op-

timality of generated solution can be proofed mathematically.

Therefore, exact optimisation is also termed as mathematical

optimisation. However, the exact optimisation approach is

impractical usually. The effort of solving an optimisation

problem by exact optimisation grows polynomially with the

problem size. For example, to solve a problem by brute force

approach, the execution time increases exponentially respect

to the dimensions of the problem.

The idea of applying exact optimisation approach on re-

quirements selection and optimisation is similar with search-

based requirements optimisation. The only difference is that,

instead of using search-based optimisation algorithm, the

search-based requirements selection and optimisation problem

is tracked with exact optimisation algorithm. There are three

main categories exact optimisations found in the literature.

They are Integer linear programming [25], dynamic program-

ming [26], and exhaustive search [27].

B. Uncertainty Handling in Requirements Selection and Op-
timisation

Uncertainty is ubiquitous and accompanies all events in

the real world. It covers all fields of scientific studies, and

is inevitable in many aspects of decision making [28]. The

essence of uncertainty is the lack of complete knowledge

at the time a decision must be made [7]. Uncertainty arises

from different sources in various forms, and complicates and

affects decision making [28]. Even worse, it may arise the

consequences of events to be risky. For example, uncertainty

about some kinds of undesirable events such as machine

failures, disasters occur, or system fails in delivery on time.

Though it is hardly likely that uncertainty could be elimi-

nated completely, it is worthwhile to identify and handle with

uncertainty to avoid unfavourable hazards [29]. To provide

a confidence final decision, there are two straightforward

approaches to cope with uncertainty so far [30], [31]. One

of the approaches is to analyse uncertainty as a post-analysis

method [32]. Another one is robust optimisation, an approach

that includes modelling and optimising the systems while

taking uncertainty into account [12], [33].

According to the literature and practice, the former approach

consists of two inter-related approaches to analyse uncertainty

[34], [35]. These are sensitivity analysis and uncertainty anal-

ysis. The sensitivity analysis is performed in order to identify

variations in results obtained from original and perturbed

model input values [34], [36]. It is the study of how the

individual uncertainty of model input contributes to the overall

uncertainty of a model output [14], [26]. This offers the

knowledge about which one of input drive the majority of the

variance in the output. Meanwhile, the uncertainty analysis

attempts to explain the possible outcomes, together with their

associated possibility of occurrence [35]. The uncertainty

analysis thus measures the overall uncertainty of the conclu-

sions of the model [37]. Comparing with sensitivity analysis,

uncertainty analysis concentrates on uncertainty quantification

and propagation of uncertainty.

Though analysing uncertainty can evaluate how sensitive

the solutions are to possible estimation uncertainties, it cannot

offer robust solutions by itself, based on decision makers’

degree of risk aversion. Hans-Georg and Sendhoff [12] suggest

investigating uncertainties during the process of optimisation

rather than using post-analysis. This approach was termed as

robust optimisation [38]. The robust optimisation is regarded

as the approach that searching and optimising the solutions

that are immune on production tolerances, parameter drifts,

and model sensitivities.

The applications and studies of robust optimisation can

be widely found in other non software engineering research

literature [39], [40] but are seldom found in the requirements

engineering research. In requirements engineering, to the best

of our knowledge, there are only three studies applying robust

optimisation on requirements optimisation area.

In 2011, Heaven and Letier first proposed a search-based

optimisation framework, which integrated with stochastic sim-

ulation, for guiding the choice of system design solutions

on high level goals in quantitative Goal Models [41]. Paixão

and Souza were the first authors to introduce a robust op-

timisation framework to the NRP problem in 2013 [15].

They used the interval to model the uncertainties of require-

ments implementation cost, and defined a small population of

scenarios to represent the uncertainty of requirement value.

Their robust NRP model tries to maximise the overall release

solution value for all possible scenarios, while minimising the

implementation cost of release solution for the worst case.

Thereby, the outcome of their approach is a conservative

robust solution, which can avoid the impact of uncertainty

in the worst scenario. In 2014, Leiter et al. applied statistical

decision theory to illustrate the expected information value
of model parameters based on [41] to offer further decision

suggestions [27]. To overcome the limitations of approximate

meta-heuristic algorithms, the exhaustive search was adapted

to explore the full solution space. The statistical expected
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information value was computed to explain the ‘robustness’ of

a solution, and then treated as an/the objective for maximising.

III. RESEARCH QUESTIONS AND CHALLENGES

To evaluate the proposed research, we derived four research

questions, each of which builds on its predecessor to develop

the evidence for the validity, performance, effectiveness and

insights gained from proposed framework to manage uncer-

tainty in requirements selection and optimisation.

RQ1: How does the proposed probabilistic robust

(simulation-based) optimisation model perform

compared to non-uncertainty-aware optimisation

model?

RQ2: What is the effectiveness of proposed exact NRP

solver for eliminating algorithmic uncertainty com-

pared to NSGA-II?

RQ3: What is the impact of the requirements uncertainty?

RQ4: Is there any pattern between the requirements char-

acteristics and requirements inclusions? If so, what

kind of pattern can be observed?

The first question is a preliminary ‘sanity check’ question.

If the proposed model cannot lead the uncertainty-aware

optimisation technique to outperform non-uncertainty-aware

optimisation technique convincingly w.r.t robustness, then it

is clearly that model formulation is not correct. After val-

idating the correctness of proposed NRP mode, the second

research question will investigate how much difference can

be observed between the NRP solutions found by NSGA-II

and proposed exact NRP solver. This research question is a

foundation for applying our exact NRP solver on managing

uncertainty in NRP. We would compare the solutions found

by NSGA-II with the benchmarks which are found by pro-

posed exact NRP solver. The differences between NSGA-II

solutions and benchmarks reveal additional (unnecessary &

unhelpful) uncertainty introduced by NSGA-II. Some metrics

(e.g., product failures probability reduction, or lost revenue

reduction) would be proposed to measure these differences

to enable better understanding for decision makers. In turn,

this research question validates the effectiveness of proposed

NRP solver. The third question is concerned with scrutinising

the impact of uncertainty that came from requirement itself.

It can be expressed in a quantified manner as to how much

expected robustness can be obtained when a decision moves

from an optimal-yet-risky solution to a robust-yet-suboptimal

one under the same budget. The last question investigates the

possible insight of the requirement characteristics, which may

help decision makers to concentrate on the most interesting

property of requirements. The same metrics used in research

question two can also be applied for answering this question.

In order to achieve the goals of this research, three

challenges have been identified. The first challenge is con-

cerned with the generality of the model. Since different

team/organisation may use different measurements of un-

certainty, the proposed uncertainty formulation of problem

solution may be become invalid. To solve this challenge, we

intend to use simulation technique to formulate uncertainty,

rather than deriving uncertainty formulation mathematically.

The second challenge is intrinsically associated with exact

NRP solver designing. It is widely known that exact optimi-

sation approach is problem specified. It tailored to perform

on a specific problem. Moreover, the effort of solving an

optimisation problem by exact optimisation grows polynomi-

ally with the problem size. Especially, dealing with multi-

objective makes the performance of exact optimisation worse.

To design a scalable and efficient optimisation algorithm is

mathematically difficult. One way to solve this challenge is

designing a requirements interaction schema to extend the

existing exact NRP solvers [25], [26]. As the proposal intend to

help decision makers to understand the impact of requirements

uncertainty, the last challenge is to establish a decision support

tool to interpret the results produced. In this case, the proposed

framework must be able to provide more details about the

nature of requirement properties and visualise them, which

may inspire decision makers to prioritise the requirements for

further evaluation and inclusion.

IV. RESEARCH METHOD AND PROGRESS

Conducting a systematic review to capture the state-of-the-

art in the area related to this proposed research is the research

activity throughout the whole research. It would establish

the theoretical foundation for the research undertaken in this

proposal. The rest steps of the research will be carried out

based on the knowledge obtained from the literature review.

As mentioned before, each of our proposed research questions

builds on its preceding research question. Consequently, there

are four research steps would be carried out to answer the

research questions sequentially.

To answer the RQ1, we were looking for a general uncer-

tainty model to formulate requirements uncertainty in NRP.

The literature review convinced us that the numerical uncer-

tainty modelling techniques [42] rely on the strong mathe-

matical assumption to measure the uncertainty, which needs

explicit the complex mathematical information. By contrast,

as described in Section II-B, simulation optimisation only

needs the probabilistic interpretation of uncertainty and uses

the simulation techniques as the statistical inference tools to

estimate the “true” values of the function based on the law

of large numbers. It is reconsigned as an ideal and universal

tool, which uses random iterates combining with optimisation

approaches, to solve stochastic uncertain problems. In other

words, decision makers can easily adapt proposed model

to handle different kinds of uncertainty when they have a

probabilistic interpretation about the uncertainty. We have

conceptually built a simulation-based NRP model to validate

the correctness of our proposed model. The result of this step

has been published in [43].

The second research step is to develop an effective exact

NRP solver to deal with algorithmic uncertainty. Much of the

previous work on NRP is concerned with the application of

search based techniques. While this is acceptable in general,

for the specific problem of handling uncertainty we face here,

it is crucial for the decision maker to know that all uncertainty
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derives from the problem itself and not from the algorithm

used to tackle it. To attack uncertainty in NRP, the most

intuitive way is applying exhaustive search. However, it is

inherently expensive and may not scale sufficiently to be more

generally applicable. For a NRP model which consists of n
requirements, there are 2n solutions in the objective space. In

order to achieve the effectiveness, there are two classes optimi-

sation approaches. The first approach is linear programming,

while another one is dynamic programming. The former one

has some issues to be solved, such as scalability (cannot deal

with more than three objectives simultaneously). The latter

one is concerned about the issue that fails to take care of

the interactions between the problem elements. Meanwhile,

our research should take into account multiple objectives and

the problem constraints. We would empirically evaluate the

effectiveness of the designed optimisation approaches with the

state-of-the-art search based techniques over different problem

sizes and different degrees of requirement interaction. We

would develop some metrics (e.g., project failure probability

reduction, or lost revenue reduction) and use these metrics

to inspect the differences between the solutions generated

by proposed exact NRP solver and the search technique to

promote the motivation of designing exact approach.

The next step is to examine the usefulness of proposed

framework to deal with requirements uncertainty. For this

purpose, a controlled empirical study which covers extreme

cases and ‘in-between’ case will be conducted. The pro-

posed uncertainty-aware approach will be performed on NRP

problem together with the non-uncertainty-aware approach to

obtain robust-yet-suboptimal solutions and optimal-yet-risky

solutions. Some metrics would be proposed to measure the

impact of requirements uncertainty. The results of comparison

are statistically analysed to test, understand, and interpret the

usefulness of our approach.

The final research step is to investigate the possible insights

of requirements characteristics. In this stage, a set of decision

support tools and visualisation tools are developed to help

requirements engineer better concentrate on detail property

of requirements. The requirement properties may include the

requirement sensitivity, the impact of requirement interaction,

and the requirement similarity.

V. CONTRIBUTIONS

This proposed research introduces a decision support frame-

work for analysing the uncertainty in requirements selection

and optimisation process. It may contribute to the requirements

engineering by:

1) Introducing a probabilistic robust (simulation-based) op-

timisation model to probabilistically evaluate require-

ments uncertainty, and formulate the simulated require-

ments uncertainty as one of the objectives for optimisa-

tion. This model may enable a decision maker to analyse

and optimise requirements and takes uncertainty into

account simultaneously.

2) Designing an exact NRP optimisation solver that can

guarantee to find the optimal solutions and eliminate

algorithmic uncertainty. By virtue of this exact approach,

decision makers can ensure that the variations between

the fragile, but optimal, results and the conservative non-

optimal results derive from the inherent uncertainties

of the requirements, thus the stochastic nature of the

approximate algorithms can be excluded.

3) Providing a decision support framework that allows

decision makers to study requirements uncertainty prop-

agation in the requirements optimisation process proba-

bilistically, and interpret the results produced.

VI. CONCLUSION

In software engineering, requirements analysis and decision

analysis are the critical foundations of the success of a soft-

ware project, since the uncertainty is essentially inevitable in

early requirements engineering. The requirements engineering

community has demonstrated the success of quantitative multi-

objective decision techniques and search-based approaches

to produce optimal solutions to decision makers in the past

decades [9], [10]. Decision makers are informed of pos-

sible trade-offs among conflicting objectives by visualising

the Pareto optimal solutions generated by these quantitative

methods. However, little work has been done to model design

time uncertainties, interpret the consequences of those uncer-

tainties, and support decision makers in analysing the inherent

characteristics of model parameters [14], [26], [27], [41]. The

decisions have to be made under incomplete knowledge about

software project.

The goal of the proposed research is to better support

requirements engineers in understanding and analysing the

inherent characteristics of requirements uncertainty. To achieve

this goal, we propose a simulation based NRP to model

requirements uncertainty, and introduce an exact analysis

approach to support requirements selection and optimisation

in the presence of uncertainty, as well as designing a decision

support framework to help decision makers to understand the

impact of requirement uncertainty.
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