SBSelector: Search Based Component Selection
for Budget Hardware

Lingbo Li®9, Mark Harman, Fan Wu, and Yuanyuan Zhang

CREST, Department of Computer Science, University College London,
Malet Place, London WC1E 6BT, UK
lingbo.1i.13Qucl.ac.uk

Abstract. Determining which functional components should be inte-
grated to a large system is a challenging task, when hardware con-
straints, such as available memory, are taken into account. We formulate
such problem as a multi-objective component selection problem, which
searches for feature subsets that balance the provision of maximal func-
tionality at minimal memory resource cost. We developed a search-based
component selection tool, and applied it to the KDE-based application,
Kate, to find a set of Kate instantiations that balance functionalities
and memory consumption. OQur results report that, compared to the
best attainment of random search, our approach can reduce at most
23.70 % memory consumption with respect to the same number compo-
nents. While comparing to greedy search, the memory reduction can be
up to 19.04 %. SBSelector finds a instantiation of Kate that provides 16
more components, while only increasing memory by 1.7 %.

1 Introduction

Using Component Based Software Engineering (CBSE) [6], a new software edi-
tion (or instance) can be developed by composing pre-existing components, each
of which contributes new functionalities to the system. In an ideal world, we
would simply include all components, thereby yielding maximal functionality.
However, in practice, resource constraints need to be taken into account. In this
paper, we focus on the resource constraint of memory consumption.

There are many component selection methods that use an iterative selec-
tion/rejection model to filter components based on pre-defined rules/criteria
(i.e., stakeholders’ requirements) or expert experience [4]. From Requirements
Engineering perspective of view, the component selection problem is also known
as the Next Release Problem (NRP) [1,10], which can be addressed using search-
based techniques. Previous work on SBSE formulations of component selection
[2] proposed a single-objective NRP model to select components, later Zhang et
al. [12] introduced Multi-Objective NRP (MONRP), and Li et al. [9] extended
MONRP with a simulation-based approach to address uncertainty. Kwong et al.
[8] also demonstrated how NRP can be re-deployed for multi objective compo-
nent selection. In their work, selecting highly rated components and the cou-
pling and cohesion relationships among components were considered as improv-
ing optimisation objectives.
© Springer International Publishing Switzerland 2015

M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 289-294, 2015.
DOI: 10.1007/978-3-319-22183-0_25

290 L. Li et al.

In this paper, we develop and implement a tool SBSelector, which uses a
multi-objective SBSE approach to component selection, and apply it to the large,
real world system Kate, a text editor written in C++. Kate is a configurable
multi-platform text editor [7]. It can be extended by ‘plug-in’ type components
to enrich its functionality. Some plug-ins are written in native C++, while others
are written in Python. There is a special C4++ plug-in called Paté that switches
on/off functionality to support Python-based plug-ins. There are currently 37
plugins available, yielding a component selection search space of 237 candidate
instances; already too many to support exhaustive exploration, thereby motivat-
ing search-based approach.

2 Component Selection as an Instance of MONRP

This section briefly outlines the problem formulation and implementation.

Objectives: There are two objectives which are taken into account. Both of
them aim to maximise the users’ satisfaction. The first objective is to maximise
the number of enabled supplement components of Kate: Maximize Component(z)=

»_ (). In general, the more components are integrated, the more features are
available for users to increase their satisfaction. The second objective is defined
as minimising the worst-case memory consumption of Kate: Minimize Memory(&)=
maxi<j<m memory(Z). Where n is the number of components, and m is the num-
ber of simulations. The decision vector & = {x1,--- ,2,} € {0,1}" determines
the inclusion of components in the system: z; is 1 if component ¢ is selected
and 0 otherwise. The function memory(Z) denotes one evaluation of memory
consumption for decision vector Z.

Algorithmic and Implementation Details: The optimisation process is
implemented in a Java-based Linux toolkit, SBSelector, which directly modi-
fies the configuration file to select components. Since SBSelector is a component
selection tool, there are no changes made to the source code of the software,
making SBSelector easily applicable to other Linux software.

The core of SBSelector adopts Non-dominated Sorting Genetic Algorithm-I1
(NSGA-II) [3]. Initially, SBSelector generates and evaluates solution popula-
tion Py with size N randomly. Each individual is a component configuration
representing the selection of components. Tournament selection, single point
crossover, and bit-flip mutation are then applied to reproduce a new popula-
tion PJ. Each generated offspring solution in P] is evaluated, and merged into
Py, which is then sorted by non-dominated sorting, thereby, producing a new
population P; with size N for next generation. The population evolves until a
termination condition is met. In our experiments, the evolution terminates when
the pre-defined generation number is reached. The main evaluation process of
SBSelector is presented in Algorithm 1.

In each simulation, Kate is executed for 1.5s, and its memory consumption
is measured every 100 ms through analysing the results of standard Unix utility,
ps. SBSelector evaluates the dependence constraints, using a ‘repair method’ [11]
to ensure that all dependence constraints are met.

SBSelector: Search Based Component Selection for Budget Hardware 291

Algorithm 1. SBSelector evaluation process

Require: the solution (configuration) S for evaluation
com_num = CountSelectedComponents(S)
memories = ()
fori=1,..,m do

memory = FvaluateMemory(S)
memories = memories U {memory}
end for
maz_memory = GetMax(memories)
SetFitnessOne(S, com_num)
SetFitnessTwo(S, max_memory)
return §

3 Experiments and Results

In this paper, to evaluate the feasibility and effectiveness of SBSelector, we
answer the following Research Questions:

RQ1 Does the extra memory consumed by enabling all plugins of Kate simply
equal to the summation of the extra memory consumed by enabling each
plugin one at a time?

We ask this question as a baseline for this work. If two plugins share some
libraries, it is likely that the extra memory consumed by enabling both plugins
will be less than the sum of the extra memories consumed by enabling each
of them. Therefore, if we observe that the extra memory needed by Kate with
all plugins enabled is much less than the summation of that with each plugin
enabled, there might be hidden shared dependencies between these plugins. This
motivates the use of search of optimisation to find the combination of enabled
plugins.

RQ2 How effectively can SBSelector find optimised combination of enabled
plugins compared to random search and a greedy strategy selection?
Without SBSE, human developers (or users) may include components ran-

domly or greedily based on the memory consumed. We use random search as well
as greedy search and compare the optimised combination of components given
by NSGA-II against the result of random search and greedy search, to under-
stand how much improvement we can achieve with search based techniques. The
initial population size of NSGA-II is set to 50, and the total number of evalu-
ations is 2500. The random search is performed as a sanity check [5], thus the
total number of evaluations is the same with that of NSGA-II. Since the Greedy
search is deterministic, it is executed once only.

RQ3 Given some mandatory plugins, can SBSelector still find combinations of

optional plugins that only trade a little amount of memory consumption?

In reality, some of the components are mandatory to the software or to the
user, thus can not be excluded. In this question, we want to know whether the
fixed inclusion has any impact to the effectiveness of SBSelector. We evaluate
SBSelector for one particular scenario S1, where all Python plugins, ‘Search
and Replace’, and ‘SQL Plugin’ are essential for Python developers. The result
of S1 is compared to scenario S2 where all components are open to select.

292 L. Li et al.

In order to provide the experiment results in the form of statistical power,
we execute our experiments for 10 times. In this case, 10 executions proved to
provide a sufficient statistical power to avoid Type two errors, since the results
were so strongly better than random search, the baseline against which we com-
pared. All experiments were performed using a machine with dual Intel Core
i5 3.20 GHz CPU and 4 GB RAM. The operating environment is Ubuntu 13.04
with Qt 4.8.4, KDE Development Platform 4.11.5, and KIO Client 2.0.

Answer to RQ1: The sum of all plugins’ individual memory consumption is
45776.4 Kbytes, meanwhile, the extra memory consumed by Kate with all the
plugins enabled is 22127.6 Kbytes. Specially, Péaté is the most expensive plugin
(consumed 14255.6 Kbytes), while the Python program language based plugins
are the cheapest. They use very little memory when they are enabled. The prob-
able reason of this interesting finding is that, Paté is the infrastructure of Python
program language based plugins. It has to provide comprehensive invokable inter-
face for those Python based plugins. Moreover, Python is a lightweight dynamic
programming language, which means the loading memory consumed by these
Python based plugins may be negligible. Consequently, enabling Paté means
nearly all required Python based underlying libraries are loaded. In summary,
the result reveals that there are some plugins sharing the underlying libraries
consuming less memory together. This promotes the applicability of our tool for
the user without exact source code level knowledge of Kate.

Answer to RQ2: The results are plotted in two figures for two types of attain-
ment: the best attainment (Fig.1la) and the median attainment (Fig.1b) sur-
faces for three approaches: NSGA-II, random search, and greedy search. It can
be observed that, in both best and median attainments, there is an obvious
gap between the attainment surfaces generated by NSGA-IT and random search.
The gap is considerably larger when the number of enabled plugins is between
24 and 34. Up to 23.79% memory can be saved by proper component selec-
tion. To perform a statistics comparison between random search and NSGA-II,
we use hypervolume indicator to represent the quality of the results. Wilcoxon
signed-rank test is performed and its outcome denotes that there is a significant
difference between the Pareto-front generated by NSGA-II and random search
(p-value = 0.004, Vargha-Delaney effect size = 1). This indicates that our tool
SBSelector outperforms the simulated human behaviour in terms of finding the
solutions with more components while consume less amount of memory.

When human developers or users select components using greedy strategy,
assuming they have the knowledge of the memory usages of all individual plugins,
the outcome is better than random selection and close to the outcome of NSGA-
II. Figure 1 exhibits that, with some basic information, greedy strategy can find,
though not optimal, considerably better solutions than random search. Despite
good solutions found by greedy search, NSGA-II constantly outperforms greedy
search. Specially, with respect to including exact 27 components, the memory
reduction from the greedy solution to the best solution found by NSGA-II is
19.04 %. In other words, without knowledge of the exact dependencies among
underlying libraries, greedy strategy may mislead the software developer to sub-
optimal solutions. Such loss will be amplified with the growth of the scale of the

SBSelector: Search Based Component Selection for Budget Hardware 293

The Best Attainment Surface The Median Attainment Surface
8 ---- NSGAIl best RO 8 ---- NSGAIl median ir=inai
Random best XX =" Random median K- ==

X Greedy-algorithm |
i

|
X I_l

X Greedy-algorithm

55
55

o}

2exx¥

OO X % XX XXXXXAEFX
T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

number of components number of components

45
1
45

XXV TR S 8=

memory consumptions (MByte)
memory consumptions (MByte)

(a) Best attainment surface (b) Median attainment surface

Fig. 1. Answer to RQ2. Comparison of 10-run attainment surfaces for NSGA-II, ran-
dom search, greedy search.

problem. The Wilcoxon signed-rank test result indicates that the Pareto-front
generated by NSGA-IT and greedy search are moderately significantly different
(p-value = 0.064, Vargha-Delaney effect size = 0.3). In Summary, comparing to
simulated human behaviour, search based techniques can effectively find more
memory-efficient component combinations. The amount of economized memory
can be up to 23.79 %.

Answer to RQ3: In order to evaluate the effectiveness and applicability of
our tool, we apply our tool in the scenario where Kate is used by a Python
programmer. The result of S1 and the comparison with the best attainment
surface of S2 is presented in Fig. 2.

When enabling 11 mandatory plugins in
S1, Kate consumes 58,840 KBytes, which is
the minimum memory consumption for S1 as
shown in Fig.2. As the number of included

plugins gradually increases, the memory con-

—— sumption of the best solutions found by

O meotcomonens NSGA-II grows insignificantly. For instance,

after including exact 16 optional plugins, the

memory consumption of Kate only increases

Fig. 2. Anwser to RQ3 The com- 1.7%. Surprisingly, when including more

parison between the Pareto front of than 19 optional plugins, NSGA-II found bet-

S1 and the best attainment surface o) golutions in $1 than that found in S2.

of 52. This is because making 11 plugins manda-

tory significantly reduces the search space, thus NSGA-II can focus more on the

rest solutions and performs better at certain areas. In summary, the answer to

RQ3 is, SBSelector is applicable and effective in practise when some plugins
are mandatory.

--- scenario S2 T
| x scenario S1 s
x

|

X X XXXy

45 50 55 60 65
I

memory consumptions (MByte)

4 Conclusions

In this paper, we demonstrated that component selection problem can be treated
as an instance of MONRP, and addressed it using search based techniques.

294 L. Li et al.

The results presented illustrate the trade-off between two types of user expe-
riences. Moreover, our results can be used to support to further investigate the
hidden implicit relationships among Kate’s plugins. The results also highlight
some solutions that, when embedding the same number of components, our app-
roach can reduce the memory consumption by up to 23.79 %. In one specific use
case, SBSelector can find a solution that provides 16 more components while
only increase 1.7 % memory consumption. Future work will investigate applying
our tool to large scale software systems (i.e., Chrome and Firefox), and con-
sider the topic as well as the popularity of components as an added constraint
& objectives.

References

1. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Inf.
Softw. Technol. 43(14), 883-890 (2001)

2. Baker, P., Harman, M. Steinhofel, K., Skaliotis, A.: Search based approaches to
component selection and prioritization for the next release problem. In: Proceed-
ings of the 22nd IEEE International Conference on Software Maintenance (ICSM
2006), pp. 176-185. IEEE Computer Society, Washington, DC (2006)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182-197 (2002)

4. Fahmi, S.A., Choi, H.-J.: A study on software component selection methods. In:
Proceedings of the 11th International Conference on Advanced Communication
Technology, ICACT 2009, vol. 1, pp. 288-292. IEEE Press, Piscataway (2009)

5. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) Empir-
ical Software Engineering and Verification. LNCS, vol. 7007, pp. 1-59. Springer,
Heidelberg (2012)

6. Heineman, G.T., Councill, W.T. (eds.): Component-based Software Engineering:

Putting the Pieces Together. Addison-Wesley Longman Publishing Co. Inc., Boston

(2001)

Kate. http://kate-editor.org/. Accessed in April 2015

8. Kwong, C.K., Mu, L.F., Tang, J.F., Luo, X.G.: Optimization of software compo-
nents selection for component-based software system development. Comput. Ind.
Eng. 58(4), 618-624 (2010)

9. Li, L., Harman, M., Letier, E., Zhang, Y.: Robust next release problem: handling
uncertainty during optimization. In: Proceedings of the 2014 Conference on Genetic
and Evolutionary Computation, GECCO 2014, pp. 1247-1254. ACM, New York
(2014)

10. Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation:
existing work and challenges. In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025,
pp- 88-94. Springer, Heidelberg (2008)

11. Zhang, Y., Harman, M., Lim, S.L.: Empirical evaluation of search based require-
ments interaction management. Inf. Softw. Technol. 55(1), 126-152 (2013). Special
section: Best papers from the 2nd International Symposium on Search Based Soft-
ware Engineering 2010

12. Zhang, Y., Harman, M., Afshin Mansouri, S.: The multi-objective next release
problem. In: Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation (GECCO 2007), pp. 1129-1137. ACM, New York (2007)

~

http://kate-editor.org/

	SBSelector: Search Based Component Selection for Budget Hardware
	1 Introduction
	2 Component Selection as an Instance of MONRP
	3 Experiments and Results
	4 Conclusions
	References

